Alert button
Picture for Ying Shan

Ying Shan

Alert button

Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail

Sep 19, 2023
Yiyu Zhuang, Qi Zhang, Ying Feng, Hao Zhu, Yao Yao, Xiaoyu Li, Yan-Pei Cao, Ying Shan, Xun Cao

We present LoD-NeuS, an efficient neural representation for high-frequency geometry detail recovery and anti-aliased novel view rendering. Drawing inspiration from voxel-based representations with the level of detail (LoD), we introduce a multi-scale tri-plane-based scene representation that is capable of capturing the LoD of the signed distance function (SDF) and the space radiance. Our representation aggregates space features from a multi-convolved featurization within a conical frustum along a ray and optimizes the LoD feature volume through differentiable rendering. Additionally, we propose an error-guided sampling strategy to guide the growth of the SDF during the optimization. Both qualitative and quantitative evaluations demonstrate that our method achieves superior surface reconstruction and photorealistic view synthesis compared to state-of-the-art approaches.

* Accept to SIGGRAPH Asia 2023 conference track 
Viaarxiv icon

HumTrans: A Novel Open-Source Dataset for Humming Melody Transcription and Beyond

Sep 18, 2023
Shansong Liu, Xu Li, Dian Li, Ying Shan

This paper introduces the HumTrans dataset, which is publicly available and primarily designed for humming melody transcription. The dataset can also serve as a foundation for downstream tasks such as humming melody based music generation. It consists of 500 musical compositions of different genres and languages, with each composition divided into multiple segments. In total, the dataset comprises 1000 music segments. To collect this humming dataset, we employed 10 college students, all of whom are either music majors or proficient in playing at least one musical instrument. Each of them hummed every segment twice using the web recording interface provided by our designed website. The humming recordings were sampled at a frequency of 44,100 Hz. During the humming session, the main interface provides a musical score for students to reference, with the melody audio playing simultaneously to aid in capturing both melody and rhythm. The dataset encompasses approximately 56.22 hours of audio, making it the largest known humming dataset to date. The dataset will be released on Hugging Face, and we will provide a GitHub repository containing baseline results and evaluation codes.

Viaarxiv icon

Speech2Lip: High-fidelity Speech to Lip Generation by Learning from a Short Video

Sep 09, 2023
Xiuzhe Wu, Pengfei Hu, Yang Wu, Xiaoyang Lyu, Yan-Pei Cao, Ying Shan, Wenming Yang, Zhongqian Sun, Xiaojuan Qi

Figure 1 for Speech2Lip: High-fidelity Speech to Lip Generation by Learning from a Short Video
Figure 2 for Speech2Lip: High-fidelity Speech to Lip Generation by Learning from a Short Video
Figure 3 for Speech2Lip: High-fidelity Speech to Lip Generation by Learning from a Short Video
Figure 4 for Speech2Lip: High-fidelity Speech to Lip Generation by Learning from a Short Video

Synthesizing realistic videos according to a given speech is still an open challenge. Previous works have been plagued by issues such as inaccurate lip shape generation and poor image quality. The key reason is that only motions and appearances on limited facial areas (e.g., lip area) are mainly driven by the input speech. Therefore, directly learning a mapping function from speech to the entire head image is prone to ambiguity, particularly when using a short video for training. We thus propose a decomposition-synthesis-composition framework named Speech to Lip (Speech2Lip) that disentangles speech-sensitive and speech-insensitive motion/appearance to facilitate effective learning from limited training data, resulting in the generation of natural-looking videos. First, given a fixed head pose (i.e., canonical space), we present a speech-driven implicit model for lip image generation which concentrates on learning speech-sensitive motion and appearance. Next, to model the major speech-insensitive motion (i.e., head movement), we introduce a geometry-aware mutual explicit mapping (GAMEM) module that establishes geometric mappings between different head poses. This allows us to paste generated lip images at the canonical space onto head images with arbitrary poses and synthesize talking videos with natural head movements. In addition, a Blend-Net and a contrastive sync loss are introduced to enhance the overall synthesis performance. Quantitative and qualitative results on three benchmarks demonstrate that our model can be trained by a video of just a few minutes in length and achieve state-of-the-art performance in both visual quality and speech-visual synchronization. Code: https://github.com/CVMI-Lab/Speech2Lip.

Viaarxiv icon

StyleAdapter: A Single-Pass LoRA-Free Model for Stylized Image Generation

Sep 04, 2023
Zhouxia Wang, Xintao Wang, Liangbin Xie, Zhongang Qi, Ying Shan, Wenping Wang, Ping Luo

Figure 1 for StyleAdapter: A Single-Pass LoRA-Free Model for Stylized Image Generation
Figure 2 for StyleAdapter: A Single-Pass LoRA-Free Model for Stylized Image Generation
Figure 3 for StyleAdapter: A Single-Pass LoRA-Free Model for Stylized Image Generation
Figure 4 for StyleAdapter: A Single-Pass LoRA-Free Model for Stylized Image Generation

This paper presents a LoRA-free method for stylized image generation that takes a text prompt and style reference images as inputs and produces an output image in a single pass. Unlike existing methods that rely on training a separate LoRA for each style, our method can adapt to various styles with a unified model. However, this poses two challenges: 1) the prompt loses controllability over the generated content, and 2) the output image inherits both the semantic and style features of the style reference image, compromising its content fidelity. To address these challenges, we introduce StyleAdapter, a model that comprises two components: a two-path cross-attention module (TPCA) and three decoupling strategies. These components enable our model to process the prompt and style reference features separately and reduce the strong coupling between the semantic and style information in the style references. StyleAdapter can generate high-quality images that match the content of the prompts and adopt the style of the references (even for unseen styles) in a single pass, which is more flexible and efficient than previous methods. Experiments have been conducted to demonstrate the superiority of our method over previous works.

* AIGC 
Viaarxiv icon

Enhancing the vocal range of single-speaker singing voice synthesis with melody-unsupervised pre-training

Sep 01, 2023
Shaohuan Zhou, Xu Li, Zhiyong Wu, Ying Shan, Helen Meng

The single-speaker singing voice synthesis (SVS) usually underperforms at pitch values that are out of the singer's vocal range or associated with limited training samples. Based on our previous work, this work proposes a melody-unsupervised multi-speaker pre-training method conducted on a multi-singer dataset to enhance the vocal range of the single-speaker, while not degrading the timbre similarity. This pre-training method can be deployed to a large-scale multi-singer dataset, which only contains audio-and-lyrics pairs without phonemic timing information and pitch annotation. Specifically, in the pre-training step, we design a phoneme predictor to produce the frame-level phoneme probability vectors as the phonemic timing information and a speaker encoder to model the timbre variations of different singers, and directly estimate the frame-level f0 values from the audio to provide the pitch information. These pre-trained model parameters are delivered into the fine-tuning step as prior knowledge to enhance the single speaker's vocal range. Moreover, this work also contributes to improving the sound quality and rhythm naturalness of the synthesized singing voices. It is the first to introduce a differentiable duration regulator to improve the rhythm naturalness of the synthesized voice, and a bi-directional flow model to improve the sound quality. Experimental results verify that the proposed SVS system outperforms the baseline on both sound quality and naturalness.

Viaarxiv icon

Exploring Model Transferability through the Lens of Potential Energy

Aug 29, 2023
Xiaotong Li, Zixuan Hu, Yixiao Ge, Ying Shan, Ling-Yu Duan

Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models. However, selecting the optimal pre-trained model from a diverse pool for a specific downstream task remains a challenge. Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels, but they overlook the impact of underlying representation dynamics during fine-tuning, leading to unreliable results, especially for self-supervised models. In this paper, we present an insightful physics-inspired approach named PED to address these challenges. We reframe the challenge of model selection through the lens of potential energy and directly model the interaction forces that influence fine-tuning dynamics. By capturing the motion of dynamic representations to decline the potential energy within a force-driven physical model, we can acquire an enhanced and more stable observation for estimating transferability. The experimental results on 10 downstream tasks and 12 self-supervised models demonstrate that our approach can seamlessly integrate into existing ranking techniques and enhance their performances, revealing its effectiveness for the model selection task and its potential for understanding the mechanism in transfer learning. Code will be available at https://github.com/lixiaotong97/PED.

* Accepted by ICCV 2023 
Viaarxiv icon

Sparse3D: Distilling Multiview-Consistent Diffusion for Object Reconstruction from Sparse Views

Aug 27, 2023
Zi-Xin Zou, Weihao Cheng, Yan-Pei Cao, Shi-Sheng Huang, Ying Shan, Song-Hai Zhang

Figure 1 for Sparse3D: Distilling Multiview-Consistent Diffusion for Object Reconstruction from Sparse Views
Figure 2 for Sparse3D: Distilling Multiview-Consistent Diffusion for Object Reconstruction from Sparse Views
Figure 3 for Sparse3D: Distilling Multiview-Consistent Diffusion for Object Reconstruction from Sparse Views
Figure 4 for Sparse3D: Distilling Multiview-Consistent Diffusion for Object Reconstruction from Sparse Views

Reconstructing 3D objects from extremely sparse views is a long-standing and challenging problem. While recent techniques employ image diffusion models for generating plausible images at novel viewpoints or for distilling pre-trained diffusion priors into 3D representations using score distillation sampling (SDS), these methods often struggle to simultaneously achieve high-quality, consistent, and detailed results for both novel-view synthesis (NVS) and geometry. In this work, we present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs. Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field. Specifically, we employ a controller that harnesses epipolar features from input views, guiding a pre-trained diffusion model, such as Stable Diffusion, to produce novel-view images that maintain 3D consistency with the input. By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results, even when faced with open-world objects. To address the blurriness introduced by conventional SDS, we introduce the category-score distillation sampling (C-SDS) to enhance detail. We conduct experiments on CO3DV2 which is a multi-view dataset of real-world objects. Both quantitative and qualitative evaluations demonstrate that our approach outperforms previous state-of-the-art works on the metrics regarding NVS and geometry reconstruction.

Viaarxiv icon

Music Understanding LLaMA: Advancing Text-to-Music Generation with Question Answering and Captioning

Aug 22, 2023
Shansong Liu, Atin Sakkeer Hussain, Chenshuo Sun, Ying Shan

Figure 1 for Music Understanding LLaMA: Advancing Text-to-Music Generation with Question Answering and Captioning
Figure 2 for Music Understanding LLaMA: Advancing Text-to-Music Generation with Question Answering and Captioning
Figure 3 for Music Understanding LLaMA: Advancing Text-to-Music Generation with Question Answering and Captioning
Figure 4 for Music Understanding LLaMA: Advancing Text-to-Music Generation with Question Answering and Captioning

Text-to-music generation (T2M-Gen) faces a major obstacle due to the scarcity of large-scale publicly available music datasets with natural language captions. To address this, we propose the Music Understanding LLaMA (MU-LLaMA), capable of answering music-related questions and generating captions for music files. Our model utilizes audio representations from a pretrained MERT model to extract music features. However, obtaining a suitable dataset for training the MU-LLaMA model remains challenging, as existing publicly accessible audio question answering datasets lack the necessary depth for open-ended music question answering. To fill this gap, we present a methodology for generating question-answer pairs from existing audio captioning datasets and introduce the MusicQA Dataset designed for answering open-ended music-related questions. The experiments demonstrate that the proposed MU-LLaMA model, trained on our designed MusicQA dataset, achieves outstanding performance in both music question answering and music caption generation across various metrics, outperforming current state-of-the-art (SOTA) models in both fields and offering a promising advancement in the T2M-Gen research field.

Viaarxiv icon

ViT-Lens: Towards Omni-modal Representations

Aug 20, 2023
Weixian Lei, Yixiao Ge, Jianfeng Zhang, Dylan Sun, Kun Yi, Ying Shan, Mike Zheng Shou

Though the success of CLIP-based training recipes in vision-language models, their scalability to more modalities (e.g., 3D, audio, etc.) is limited to large-scale data, which is expensive or even inapplicable for rare modalities. In this paper, we present ViT-Lens that facilitates efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning to a pre-defined space. Specifically, the modality-specific lens is tuned to project multimodal signals to the shared embedding space, which are then processed by a strong ViT that carries pre-trained image knowledge. The encoded multimodal representations are optimized toward aligning with the modal-independent space, pre-defined by off-the-shelf foundation models. A well-trained lens with a ViT backbone has the potential to serve as one of these foundation models, supervising the learning of subsequent modalities. ViT-Lens provides a unified solution for representation learning of increasing modalities with two appealing benefits: (i) Exploiting the pretrained ViT across tasks and domains effectively with efficient data regime; (ii) Emergent downstream capabilities of novel modalities are demonstrated due to the modality alignment space. We evaluate ViT-Lens in the context of 3D as an initial verification. In zero-shot 3D classification, ViT-Lens achieves substantial improvements over previous state-of-the-art, showing 52.0% accuracy on Objaverse-LVIS, 87.4% on ModelNet40, and 60.6% on ScanObjectNN. Furthermore, we enable zero-shot 3D question-answering by simply integrating the trained 3D lens into the InstructBLIP model without any adaptation. We will release the results of ViT-Lens on more modalities in the near future.

* 19 pages, 4 figures and 9 tables 
Viaarxiv icon

OmniZoomer: Learning to Move and Zoom in on Sphere at High-Resolution

Aug 19, 2023
Zidong Cao, Hao Ai, Yan-Pei Cao, Ying Shan, Xiaohu Qie, Lin Wang

Figure 1 for OmniZoomer: Learning to Move and Zoom in on Sphere at High-Resolution
Figure 2 for OmniZoomer: Learning to Move and Zoom in on Sphere at High-Resolution
Figure 3 for OmniZoomer: Learning to Move and Zoom in on Sphere at High-Resolution
Figure 4 for OmniZoomer: Learning to Move and Zoom in on Sphere at High-Resolution

Omnidirectional images (ODIs) have become increasingly popular, as their large field-of-view (FoV) can offer viewers the chance to freely choose the view directions in immersive environments such as virtual reality. The M\"obius transformation is typically employed to further provide the opportunity for movement and zoom on ODIs, but applying it to the image level often results in blurry effect and aliasing problem. In this paper, we propose a novel deep learning-based approach, called \textbf{OmniZoomer}, to incorporate the M\"obius transformation into the network for movement and zoom on ODIs. By learning various transformed feature maps under different conditions, the network is enhanced to handle the increasing edge curvatures, which alleviates the blurry effect. Moreover, to address the aliasing problem, we propose two key components. Firstly, to compensate for the lack of pixels for describing curves, we enhance the feature maps in the high-resolution (HR) space and calculate the transformed index map with a spatial index generation module. Secondly, considering that ODIs are inherently represented in the spherical space, we propose a spherical resampling module that combines the index map and HR feature maps to transform the feature maps for better spherical correlation. The transformed feature maps are decoded to output a zoomed ODI. Experiments show that our method can produce HR and high-quality ODIs with the flexibility to move and zoom in to the object of interest. Project page is available at http://vlislab22.github.io/OmniZoomer/.

* Accepted by ICCV 2023 
Viaarxiv icon