Alert button
Picture for Huiyuan Chen

Huiyuan Chen

Alert button

Hessian-aware Quantized Node Embeddings for Recommendation

Sep 02, 2023
Huiyuan Chen, Kaixiong Zhou, Kwei-Herng Lai, Chin-Chia Michael Yeh, Yan Zheng, Xia Hu, Hao Yang

Graph Neural Networks (GNNs) have achieved state-of-the-art performance in recommender systems. Nevertheless, the process of searching and ranking from a large item corpus usually requires high latency, which limits the widespread deployment of GNNs in industry-scale applications. To address this issue, many methods compress user/item representations into the binary embedding space to reduce space requirements and accelerate inference. Also, they use the Straight-through Estimator (STE) to prevent vanishing gradients during back-propagation. However, the STE often causes the gradient mismatch problem, leading to sub-optimal results. In this work, we present the Hessian-aware Quantized GNN (HQ-GNN) as an effective solution for discrete representations of users/items that enable fast retrieval. HQ-GNN is composed of two components: a GNN encoder for learning continuous node embeddings and a quantized module for compressing full-precision embeddings into low-bit ones. Consequently, HQ-GNN benefits from both lower memory requirements and faster inference speeds compared to vanilla GNNs. To address the gradient mismatch problem in STE, we further consider the quantized errors and its second-order derivatives for better stability. The experimental results on several large-scale datasets show that HQ-GNN achieves a good balance between latency and performance.

Viaarxiv icon

Tackling Diverse Minorities in Imbalanced Classification

Aug 28, 2023
Kwei-Herng Lai, Daochen Zha, Huiyuan Chen, Mangesh Bendre, Yuzhong Chen, Mahashweta Das, Hao Yang, Xia Hu

Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers. When working with large datasets, the imbalanced issue can be further exacerbated, making it exceptionally difficult to train classifiers effectively. To address the problem, over-sampling techniques have been developed to linearly interpolating data instances between minorities and their neighbors. However, in many real-world scenarios such as anomaly detection, minority instances are often dispersed diversely in the feature space rather than clustered together. Inspired by domain-agnostic data mix-up, we propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes. It is non-trivial to develop such a framework, the challenges include source sample selection, mix-up strategy selection, and the coordination between the underlying model and mix-up strategies. To tackle these challenges, we formulate the problem of iterative data mix-up as a Markov decision process (MDP) that maps data attributes onto an augmentation strategy. To solve the MDP, we employ an actor-critic framework to adapt the discrete-continuous decision space. This framework is utilized to train a data augmentation policy and design a reward signal that explores classifier uncertainty and encourages performance improvement, irrespective of the classifier's convergence. We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets using three different types of classifiers. The results of these experiments showcase the potential and promise of our framework in addressing imbalanced datasets with diverse minorities.

Viaarxiv icon

Enhancing Transformers without Self-supervised Learning: A Loss Landscape Perspective in Sequential Recommendation

Aug 20, 2023
Vivian Lai, Huiyuan Chen, Chin-Chia Michael Yeh, Minghua Xu, Yiwei Cai, Hao Yang

Figure 1 for Enhancing Transformers without Self-supervised Learning: A Loss Landscape Perspective in Sequential Recommendation
Figure 2 for Enhancing Transformers without Self-supervised Learning: A Loss Landscape Perspective in Sequential Recommendation
Figure 3 for Enhancing Transformers without Self-supervised Learning: A Loss Landscape Perspective in Sequential Recommendation
Figure 4 for Enhancing Transformers without Self-supervised Learning: A Loss Landscape Perspective in Sequential Recommendation

Transformer and its variants are a powerful class of architectures for sequential recommendation, owing to their ability of capturing a user's dynamic interests from their past interactions. Despite their success, Transformer-based models often require the optimization of a large number of parameters, making them difficult to train from sparse data in sequential recommendation. To address the problem of data sparsity, previous studies have utilized self-supervised learning to enhance Transformers, such as pre-training embeddings from item attributes or contrastive data augmentations. However, these approaches encounter several training issues, including initialization sensitivity, manual data augmentations, and large batch-size memory bottlenecks. In this work, we investigate Transformers from the perspective of loss geometry, aiming to enhance the models' data efficiency and generalization in sequential recommendation. We observe that Transformers (e.g., SASRec) can converge to extremely sharp local minima if not adequately regularized. Inspired by the recent Sharpness-Aware Minimization (SAM), we propose SAMRec, which significantly improves the accuracy and robustness of sequential recommendation. SAMRec performs comparably to state-of-the-art self-supervised Transformers, such as S$^3$Rec and CL4SRec, without the need for pre-training or strong data augmentations.

Viaarxiv icon

Adversarial Collaborative Filtering for Free

Aug 20, 2023
Huiyuan Chen, Xiaoting Li, Vivian Lai, Chin-Chia Michael Yeh, Yujie Fan, Yan Zheng, Mahashweta Das, Hao Yang

Collaborative Filtering (CF) has been successfully used to help users discover the items of interest. Nevertheless, existing CF methods suffer from noisy data issue, which negatively impacts the quality of recommendation. To tackle this problem, many prior studies leverage adversarial learning to regularize the representations of users/items, which improves both generalizability and robustness. Those methods often learn adversarial perturbations and model parameters under min-max optimization framework. However, there still have two major drawbacks: 1) Existing methods lack theoretical guarantees of why adding perturbations improve the model generalizability and robustness; 2) Solving min-max optimization is time-consuming. In addition to updating the model parameters, each iteration requires additional computations to update the perturbations, making them not scalable for industry-scale datasets. In this paper, we present Sharpness-aware Collaborative Filtering (SharpCF), a simple yet effective method that conducts adversarial training without extra computational cost over the base optimizer. To achieve this goal, we first revisit the existing adversarial collaborative filtering and discuss its connection with recent Sharpness-aware Minimization. This analysis shows that adversarial training actually seeks model parameters that lie in neighborhoods around the optimal model parameters having uniformly low loss values, resulting in better generalizability. To reduce the computational overhead, SharpCF introduces a novel trajectory loss to measure the alignment between current weights and past weights. Experimental results on real-world datasets demonstrate that our SharpCF achieves superior performance with almost zero additional computational cost comparing to adversarial training.

Viaarxiv icon

EmbeddingTree: Hierarchical Exploration of Entity Features in Embedding

Aug 02, 2023
Yan Zheng, Junpeng Wang, Chin-Chia Michael Yeh, Yujie Fan, Huiyuan Chen, Liang Wang, Wei Zhang

Embedding learning transforms discrete data entities into continuous numerical representations, encoding features/properties of the entities. Despite the outstanding performance reported from different embedding learning algorithms, few efforts were devoted to structurally interpreting how features are encoded in the learned embedding space. This work proposes EmbeddingTree, a hierarchical embedding exploration algorithm that relates the semantics of entity features with the less-interpretable embedding vectors. An interactive visualization tool is also developed based on EmbeddingTree to explore high-dimensional embeddings. The tool helps users discover nuance features of data entities, perform feature denoising/injecting in embedding training, and generate embeddings for unseen entities. We demonstrate the efficacy of EmbeddingTree and our visualization tool through embeddings generated for industry-scale merchant data and the public 30Music listening/playlists dataset.

* 5 pages, 3 figures, accepted by PacificVis 2023 
Viaarxiv icon

Sharpness-Aware Graph Collaborative Filtering

Jul 18, 2023
Huiyuan Chen, Chin-Chia Michael Yeh, Yujie Fan, Yan Zheng, Junpeng Wang, Vivian Lai, Mahashweta Das, Hao Yang

Figure 1 for Sharpness-Aware Graph Collaborative Filtering
Figure 2 for Sharpness-Aware Graph Collaborative Filtering
Figure 3 for Sharpness-Aware Graph Collaborative Filtering
Figure 4 for Sharpness-Aware Graph Collaborative Filtering

Graph Neural Networks (GNNs) have achieved impressive performance in collaborative filtering. However, GNNs tend to yield inferior performance when the distributions of training and test data are not aligned well. Also, training GNNs requires optimizing non-convex neural networks with an abundance of local and global minima, which may differ widely in their performance at test time. Thus, it is essential to choose the minima carefully. Here we propose an effective training schema, called {gSAM}, under the principle that the \textit{flatter} minima has a better generalization ability than the \textit{sharper} ones. To achieve this goal, gSAM regularizes the flatness of the weight loss landscape by forming a bi-level optimization: the outer problem conducts the standard model training while the inner problem helps the model jump out of the sharp minima. Experimental results show the superiority of our gSAM.

Viaarxiv icon

Federated Few-shot Learning

Jul 02, 2023
Song Wang, Xingbo Fu, Kaize Ding, Chen Chen, Huiyuan Chen, Jundong Li

Figure 1 for Federated Few-shot Learning
Figure 2 for Federated Few-shot Learning
Figure 3 for Federated Few-shot Learning
Figure 4 for Federated Few-shot Learning

Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients may only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as federated few-shot learning. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines. Our code is provided at

* SIGKDD 2023 
Viaarxiv icon

Context-aware Domain Adaptation for Time Series Anomaly Detection

Apr 15, 2023
Kwei-Herng Lai, Lan Wang, Huiyuan Chen, Kaixiong Zhou, Fei Wang, Hao Yang, Xia Hu

Figure 1 for Context-aware Domain Adaptation for Time Series Anomaly Detection
Figure 2 for Context-aware Domain Adaptation for Time Series Anomaly Detection
Figure 3 for Context-aware Domain Adaptation for Time Series Anomaly Detection
Figure 4 for Context-aware Domain Adaptation for Time Series Anomaly Detection

Time series anomaly detection is a challenging task with a wide range of real-world applications. Due to label sparsity, training a deep anomaly detector often relies on unsupervised approaches. Recent efforts have been devoted to time series domain adaptation to leverage knowledge from similar domains. However, existing solutions may suffer from negative knowledge transfer on anomalies due to their diversity and sparsity. Motivated by the empirical study of context alignment between two domains, we aim to transfer knowledge between two domains via adaptively sampling context information for two domains. This is challenging because it requires simultaneously modeling the complex in-domain temporal dependencies and cross-domain correlations while exploiting label information from the source domain. To this end, we propose a framework that combines context sampling and anomaly detection into a joint learning procedure. We formulate context sampling into the Markov decision process and exploit deep reinforcement learning to optimize the time series domain adaptation process via context sampling and design a tailored reward function to generate domain-invariant features that better align two domains for anomaly detection. Experiments on three public datasets show promise for knowledge transfer between two similar domains and two entirely different domains.

Viaarxiv icon