Reconfigurable intelligent surfaces (RISs) offer the unique capability to reshape the radio environment, thereby simplifying transmission schemes traditionally contingent on channel conditions. Joint spatial division and multiplexing (JSDM) emerges as a low-overhead transmission scheme for multi-user equipment (UE) scenarios, typically requiring complex matrix decomposition to achieve block-diagonalization of the effective channel matrix. In this study, we introduce an innovative JSDM design that leverages RISs to customize channels, thereby streamlining the overall procedures. By strategically positioning RISs at the discrete Fourier transform (DFT) directions of the base station (BS), we establish orthogonal line-of-sight links within the BS-RIS channel, enabling a straightforward pre-beamforming design. Based on UE grouping, we devise reflected beams of the RIS with optimized directions to mitigate inter-group interference in the RISs-UEs channel. An approximation of the channel cross-correlation coefficient is derived and serves as a foundation for the RISs-UEs association, further diminishing inter-group interference. Numerical results substantiate the efficacy of our RIS-customized JSDM in not only achieving effective channel block-diagonalization but also in significantly enhancing the sum spectral efficiency for multi-UE transmissions.