Lawrence
Abstract:While numerous experimental studies have demonstrated the feasibility of reconfigurable intelligent surface (RIS) technology, most have primarily focused on extending coverage. In contrast, this paper presents an experimental evaluation of multiple active RISs deployed in a 5G multiple-input multiple-output (MIMO) commercial network, emphasizing enhancements in channel rank and throughput. We propose a low-complexity, codebook-based beamforming algorithm specifically tailored for multi-RIS configurations, which diversifies directional channels and reduces reliance on explicit channel state information. Field tests using a commercial base station and user equipment reveal that the multi-RIS system can improve channel rank and throughput by up to 14% compared to single-RIS deployments, while maintaining low computational complexity. These findings underscore the practical benefits of active multi-RIS systems for next-generation networks.
Abstract:The low-altitude economy has emerged as a critical focus for future economic development, emphasizing the urgent need for flight activity surveillance utilizing the existing sensing capabilities of mobile cellular networks. Traditional monostatic or localization-based sensing methods, however, encounter challenges in fusing sensing results and matching channel parameters. To address these challenges, we propose an innovative approach that directly draws the radio images of the low-altitude space, leveraging its inherent sparsity with compressed sensing (CS)-based algorithms and the cooperation of multiple base stations. Furthermore, recognizing that unmanned aerial vehicles (UAVs) are randomly distributed in space, we introduce a physics-embedded learning method to overcome off-grid issues inherent in CS-based models. Additionally, an online hard example mining method is incorporated into the design of the loss function, enabling the network to adaptively concentrate on the samples bearing significant discrepancy with the ground truth, thereby enhancing its ability to detect the rare UAVs within the expansive low-altitude space. Simulation results demonstrate the effectiveness of the imaging-based low-altitude surveillance approach, with the proposed physics-embedded learning algorithm significantly outperforming traditional CS-based methods under off-grid conditions.
Abstract:This study presents an advanced wireless system that embeds target recognition within reconfigurable intelligent surface (RIS)-aided communication systems, powered by cuttingedge deep learning innovations. Such a system faces the challenge of fine-tuning both the RIS phase shifts and neural network (NN) parameters, since they intricately interdepend on each other to accomplish the recognition task. To address these challenges, we propose an intelligent recognizer that strategically harnesses every piece of prior action responses, thereby ingeniously multiplexing downlink signals to facilitate environment sensing. Specifically, we design a novel NN based on the long short-term memory (LSTM) architecture and the physical channel model. The NN iteratively captures and fuses information from previous measurements and adaptively customizes RIS configurations to acquire the most relevant information for the recognition task in subsequent moments. Tailored dynamically, these configurations adapt to the scene, task, and target specifics. Simulation results reveal that our proposed method significantly outperforms the state-of-the-art method, while resulting in minimal impacts on communication performance, even as sensing is performed simultaneously.
Abstract:Deep learning (DL) has shown great potential for enhancing channel state information (CSI) feedback in multiple-input multiple-output (MIMO) communication systems, a subject currently under study by the 3GPP standards body. Digital twins (DTs) have emerged as an effective means to generate site-specific datasets for training DL-based CSI feedback models. However, most existing studies rely solely on simulations, leaving the effectiveness of DTs in reducing DL training costs yet to be validated through realistic experimental setups. This paper addresses this gap by establishing a real-world (RW) environment and corresponding virtual channels using ray tracing with replicated 3D models and accurate antenna properties. We evaluate whether models trained in DT environments can effectively operate in RW scenarios and quantify the benefits of online learning (OL) for performance enhancement. Results show that a dedicated DT remains essential even with OL to achieve satisfactory performance in RW scenarios.
Abstract:The distributed upper 6 GHz (U6G) extra-large scale antenna array (ELAA) is a key enabler for future wireless communication systems, offering higher throughput and wider coverage, similar to existing ELAA systems, while effectively mitigating unaffordable complexity and hardware overhead. Uncertain channel characteristics, however, present significant bottleneck problems that hinder the hardware structure and algorithm design of the distributed U6G ELAA system. In response, we construct a U6G channel sounder and carry out extensive measurement campaigns across various typical scenarios. Initially, U6G channel characteristics, particularly small-scale fading characteristics, are unveiled and compared across different scenarios. Subsequently, the U6G ELAA channel characteristics are analyzed using a virtual array comprising 64 elements. Furthermore, inspired by the potential for distributed processing, we investigate U6G ELAA channel characteristics from the perspectives of subarrays and sub-bands, including subarray-wise nonstationarities, consistencies, far-field approximations, and sub-band characteristics. Through a combination of analysis and measurement validation, several insights and benefits, particularly suitable for distributed processing in U6G ELAA systems, are revealed, which provides practical validation for the deployment of U6G ELAA systems.
Abstract:The acquisition of channel state information (CSI) is essential in MIMO-OFDM communication systems. Data-aided enhanced receivers, by incorporating domain knowledge, effectively mitigate performance degradation caused by imperfect CSI, particularly in dynamic wireless environments. However, existing methodologies face notable challenges: they either refine channel estimates within MIMO subsystems separately, which proves ineffective due to deviations from assumptions regarding the time-varying nature of channels, or fully exploit the time-frequency characteristics but incur significantly high computational overhead due to dimensional concatenation. To address these issues, this study introduces a novel data-aided method aimed at reducing complexity, particularly suited for fast-fading scenarios in fifth-generation (5G) and beyond networks. We derive a general form of a data-aided linear minimum mean-square error (LMMSE)-based algorithm, optimized for iterative joint channel estimation and signal detection. Additionally, we propose a computationally efficient alternative to this algorithm, which achieves comparable performance with significantly reduced complexity. Empirical evaluations reveal that our proposed algorithms outperform several state-of-the-art approaches across various MIMO-OFDM configurations, pilot sequence lengths, and in the presence of time variability. Comparative analysis with basis expansion model-based iterative receivers highlights the superiority of our algorithms in achieving an effective trade-off between accuracy and computational complexity.
Abstract:Accurate channel state information (CSI) is critical for realizing the full potential of multiple-antenna wireless communication systems. While deep learning (DL)-based CSI feedback methods have shown promise in reducing feedback overhead, their generalization capability across varying propagation environments remains limited due to their data-driven nature. Existing solutions based on online training improve adaptability but impose significant overhead in terms of data collection and computational resources. In this work, we propose AdapCsiNet, an environment-adaptive DL-based CSI feedback framework that eliminates the need for online training. By integrating environmental information -- represented as a scene graph -- into a hypernetwork-guided CSI reconstruction process, AdapCsiNet dynamically adapts to diverse channel conditions. A two-step training strategy is introduced to ensure baseline reconstruction performance and effective environment-aware adaptation. Simulation results demonstrate that AdapCsiNet achieves up to 46.4% improvement in CSI reconstruction accuracy and matches the performance of online learning methods without incurring additional runtime overhead.
Abstract:Future wireless communication networks are expected to be smarter and more aware of their surroundings, enabling a wide range of context-aware applications. Reconfigurable intelligent surfaces (RISs) are set to play a critical role in supporting various sensing tasks, such as target recognition. However, current methods typically use RIS configurations optimized once and applied over fixed sensing durations, limiting their ability to adapt to different targets and reducing sensing accuracy. To overcome these limitations, this study proposes an advanced wireless communication system that multiplexes downlink signals for environmental sensing and introduces an intelligent recognizer powered by deep learning techniques. Specifically, we design a novel neural network based on the long short-term memory architecture and the physical channel model. This network iteratively captures and fuses information from previous measurements, adaptively customizing RIS phases to gather the most relevant information for the recognition task at subsequent moments. These configurations are dynamically adjusted according to scene, task, target, and quantization priors. Furthermore, the recognizer includes a decision-making module that dynamically allocates different sensing durations, determining whether to continue or terminate the sensing process based on the collected measurements. This approach maximizes resource utilization efficiency. Simulation results demonstrate that the proposed method significantly outperforms state-of-the-art techniques while minimizing the impact on communication performance, even when sensing and communication occur simultaneously. Part of the source code for this paper can be accessed at https://github.com/kiwi1944/CRISense.
Abstract:In the near-field region of an extremely large-scale multiple-input multiple-output (XL MIMO) system, channel reconstruction is typically addressed through sparse parameter estimation based on compressed sensing (CS) algorithms after converting the received pilot signals into the transformed domain. However, the exhaustive search on the codebook in CS algorithms consumes significant computational resources and running time, particularly when a large number of antennas are equipped at the base station (BS). To overcome this challenge, we propose a novel scheme to replace the high-cost exhaustive search procedure. We visualize the sparse channel matrix in the transformed domain as a channel image and design the channel keypoint detection network (CKNet) to locate the user and scatterers in high speed. Subsequently, we use a small-scale newtonized orthogonal matching pursuit (NOMP) based refiner to further enhance the precision. Our method is applicable to both the Cartesian domain and the Polar domain. Additionally, to deal with scenarios with a flexible number of propagation paths, we further design FlexibleCKNet to predict both locations and confidence scores. Our experimental results validate that the CKNet and FlexibleCKNet-empowered channel reconstruction scheme can significantly reduce the computational complexity while maintaining high accuracy in both user and scatterer localization and channel reconstruction tasks.
Abstract:Artificial intelligence (AI) has emerged as a promising tool for channel state information (CSI) feedback. While recent research primarily focuses on improving feedback accuracy through novel architectures, the underlying mechanisms of AI-based CSI feedback remain unclear. This study investigates these mechanisms by analyzing performance across diverse datasets and reveals that superior feedback performance stems from the strong fitting capabilities of AI models and their ability to leverage environmental knowledge. Building on these findings, we propose a prompt-enabled large AI model (LAM) for CSI feedback. The LAM employs powerful transformer blocks and is trained on extensive datasets from various scenarios. To further enhance reconstruction quality, the channel distribution -- represented as the mean of channel magnitude in the angular domain -- is incorporated as a prompt within the decoder. Simulation results confirm that the proposed prompt-enabled LAM significantly improves feedback accuracy and generalization performance while reducing data collection requirements in new scenarios.