Abstract:Enhancing large language models by simply scaling up datasets has begun to yield diminishing returns, shifting the spotlight to data quality. Monte Carlo Tree Search (MCTS) has emerged as a powerful technique for generating high-quality chain-of-thought data, yet conventional approaches typically retain only the top-scoring trajectory from the search tree, discarding sibling nodes that often contain valuable partial insights, recurrent error patterns, and alternative reasoning strategies. This unconditional rejection of non-optimal reasoning branches may waste vast amounts of informative data in the whole search tree. We propose SIGMA (Sibling Guided Monte Carlo Augmentation), a novel framework that reintegrates these discarded sibling nodes to refine LLM reasoning. SIGMA forges semantic links among sibling nodes along each search path and applies a two-stage refinement: a critique model identifies overlooked strengths and weaknesses across the sibling set, and a revision model conducts text-based backpropagation to refine the top-scoring trajectory in light of this comparative feedback. By recovering and amplifying the underutilized but valuable signals from non-optimal reasoning branches, SIGMA substantially improves reasoning trajectories. On the challenging MATH benchmark, our SIGMA-tuned 7B model achieves 54.92% accuracy using only 30K samples, outperforming state-of-the-art models trained on 590K samples. This result highlights that our sibling-guided optimization not only significantly reduces data usage but also significantly boosts LLM reasoning.
Abstract:Imitation Learning has become a fundamental approach in robotic manipulation. However, collecting large-scale real-world robot demonstrations is prohibitively expensive. Simulators offer a cost-effective alternative, but the sim-to-real gap make it extremely challenging to scale. Therefore, we introduce RoboTransfer, a diffusion-based video generation framework for robotic data synthesis. Unlike previous methods, RoboTransfer integrates multi-view geometry with explicit control over scene components, such as background and object attributes. By incorporating cross-view feature interactions and global depth/normal conditions, RoboTransfer ensures geometry consistency across views. This framework allows fine-grained control, including background edits and object swaps. Experiments demonstrate that RoboTransfer is capable of generating multi-view videos with enhanced geometric consistency and visual fidelity. In addition, policies trained on the data generated by RoboTransfer achieve a 33.3% relative improvement in the success rate in the DIFF-OBJ setting and a substantial 251% relative improvement in the more challenging DIFF-ALL scenario. Explore more demos on our project page: https://horizonrobotics.github.io/robot_lab/robotransfer
Abstract:We present DIPO, a novel framework for the controllable generation of articulated 3D objects from a pair of images: one depicting the object in a resting state and the other in an articulated state. Compared to the single-image approach, our dual-image input imposes only a modest overhead for data collection, but at the same time provides important motion information, which is a reliable guide for predicting kinematic relationships between parts. Specifically, we propose a dual-image diffusion model that captures relationships between the image pair to generate part layouts and joint parameters. In addition, we introduce a Chain-of-Thought (CoT) based graph reasoner that explicitly infers part connectivity relationships. To further improve robustness and generalization on complex articulated objects, we develop a fully automated dataset expansion pipeline, name LEGO-Art, that enriches the diversity and complexity of PartNet-Mobility dataset. We propose PM-X, a large-scale dataset of complex articulated 3D objects, accompanied by rendered images, URDF annotations, and textual descriptions. Extensive experiments demonstrate that DIPO significantly outperforms existing baselines in both the resting state and the articulated state, while the proposed PM-X dataset further enhances generalization to diverse and structurally complex articulated objects. Our code and dataset will be released to the community upon publication.
Abstract:Transformer-based models are the foundation of modern machine learning, but their execution, particularly during autoregressive decoding in large language models (LLMs), places significant pressure on memory systems due to frequent memory accesses and growing key-value (KV) caches. This creates a bottleneck in memory bandwidth, especially as context lengths increase. Processing-in-memory (PIM) architectures are a promising solution, offering high internal bandwidth and compute parallelism near memory. However, current PIM designs are primarily optimized for dense attention and struggle with the dynamic, irregular access patterns introduced by modern KV cache sparsity techniques. Consequently, they suffer from workload imbalance, reducing throughput and resource utilization. In this work, we propose STARC, a novel sparsity-optimized data mapping scheme tailored specifically for efficient LLM decoding on PIM architectures. STARC clusters KV pairs by semantic similarity and maps them to contiguous memory regions aligned with PIM bank structures. During decoding, queries retrieve relevant tokens at cluster granularity by matching against precomputed centroids, enabling selective attention and parallel processing without frequent reclustering or data movement overhead. Experiments on the HBM-PIM system show that, compared to common token-wise sparsity methods, STARC reduces attention-layer latency by 19%--31% and energy consumption by 19%--27%. Under a KV cache budget of 1024, it achieves up to 54%--74% latency reduction and 45%--67% energy reduction compared to full KV cache retrieval. Meanwhile, STARC maintains model accuracy comparable to state-of-the-art sparse attention methods, demonstrating its effectiveness in enabling efficient and hardware-friendly long-context LLM inference on PIM architectures.
Abstract:Multi-modality image fusion aims to synthesize a single, comprehensive image from multiple source inputs. Traditional approaches, such as CNNs and GANs, offer efficiency but struggle to handle low-quality or complex inputs. Recent advances in text-guided methods leverage large model priors to overcome these limitations, but at the cost of significant computational overhead, both in memory and inference time. To address this challenge, we propose a novel framework for distilling large model priors, eliminating the need for text guidance during inference while dramatically reducing model size. Our framework utilizes a teacher-student architecture, where the teacher network incorporates large model priors and transfers this knowledge to a smaller student network via a tailored distillation process. Additionally, we introduce spatial-channel cross-fusion module to enhance the model's ability to leverage textual priors across both spatial and channel dimensions. Our method achieves a favorable trade-off between computational efficiency and fusion quality. The distilled network, requiring only 10\% of the parameters and inference time of the teacher network, retains 90\% of its performance and outperforms existing SOTA methods. Extensive experiments demonstrate the effectiveness of our approach. The implementation will be made publicly available as an open-source resource.
Abstract:This paper presents GeoFlow-SLAM, a robust and effective Tightly-Coupled RGBD-inertial SLAM for legged robots operating in highly dynamic environments.By integrating geometric consistency, legged odometry constraints, and dual-stream optical flow (GeoFlow), our method addresses three critical challenges:feature matching and pose initialization failures during fast locomotion and visual feature scarcity in texture-less scenes.Specifically, in rapid motion scenarios, feature matching is notably enhanced by leveraging dual-stream optical flow, which combines prior map points and poses. Additionally, we propose a robust pose initialization method for fast locomotion and IMU error in legged robots, integrating IMU/Legged odometry, inter-frame Perspective-n-Point (PnP), and Generalized Iterative Closest Point (GICP). Furthermore, a novel optimization framework that tightly couples depth-to-map and GICP geometric constraints is first introduced to improve the robustness and accuracy in long-duration, visually texture-less environments. The proposed algorithms achieve state-of-the-art (SOTA) on collected legged robots and open-source datasets. To further promote research and development, the open-source datasets and code will be made publicly available at https://github.com/NSN-Hello/GeoFlow-SLAM
Abstract:Multi-task learning (MTL) has emerged as a promising approach for deploying deep learning models in real-life applications. Recent studies have proposed optimization-based learning paradigms to establish task-shared representations in MTL. However, our paper empirically argues that these studies, specifically gradient-based ones, primarily emphasize the conflict issue while neglecting the potentially more significant impact of imbalance/dominance in MTL. In line with this perspective, we enhance the existing baseline method by injecting imbalance-sensitivity through the imposition of constraints on the projected norms. To demonstrate the effectiveness of our proposed IMbalance-sensitive Gradient (IMGrad) descent method, we evaluate it on multiple mainstream MTL benchmarks, encompassing supervised learning tasks as well as reinforcement learning. The experimental results consistently demonstrate competitive performance.
Abstract:Solving expert-level multimodal tasks is a key milestone towards general intelligence. As the capabilities of multimodal large language models (MLLMs) continue to improve, evaluation of such advanced multimodal intelligence becomes necessary yet challenging. In this work, we introduce ProBench, a benchmark of open-ended user queries that require professional expertise and advanced reasoning. ProBench consists of 4,000 high-quality samples independently submitted by professionals based on their daily productivity demands. It spans across 10 fields and 56 sub-fields, including science, arts, humanities, coding, mathematics, and creative writing. Experimentally, we evaluate and compare 24 latest models using MLLM-as-a-Judge. Our results reveal that although the best open-source models rival the proprietary ones, ProBench presents significant challenges in visual perception, textual understanding, domain knowledge and advanced reasoning, thus providing valuable directions for future multimodal AI research efforts.
Abstract:Articulated objects, as prevalent entities in human life, their 3D representations play crucial roles across various applications. However, achieving both high-fidelity textured surface reconstruction and dynamic generation for articulated objects remains challenging for existing methods. In this paper, we present REArtGS, a novel framework that introduces additional geometric and motion constraints to 3D Gaussian primitives, enabling high-quality textured surface reconstruction and generation for articulated objects. Specifically, given multi-view RGB images of arbitrary two states of articulated objects, we first introduce an unbiased Signed Distance Field (SDF) guidance to regularize Gaussian opacity fields, enhancing geometry constraints and improving surface reconstruction quality. Then we establish deformable fields for 3D Gaussians constrained by the kinematic structures of articulated objects, achieving unsupervised generation of surface meshes in unseen states. Extensive experiments on both synthetic and real datasets demonstrate our approach achieves high-quality textured surface reconstruction for given states, and enables high-fidelity surface generation for unseen states. Codes will be released within the next four months.
Abstract:Membership Inference Attacks (MIAs) aim to predict whether a data sample belongs to the model's training set or not. Although prior research has extensively explored MIAs in Large Language Models (LLMs), they typically require accessing to complete output logits (\ie, \textit{logits-based attacks}), which are usually not available in practice. In this paper, we study the vulnerability of pre-trained LLMs to MIAs in the \textit{label-only setting}, where the adversary can only access generated tokens (text). We first reveal that existing label-only MIAs have minor effects in attacking pre-trained LLMs, although they are highly effective in inferring fine-tuning datasets used for personalized LLMs. We find that their failure stems from two main reasons, including better generalization and overly coarse perturbation. Specifically, due to the extensive pre-training corpora and exposing each sample only a few times, LLMs exhibit minimal robustness differences between members and non-members. This makes token-level perturbations too coarse to capture such differences. To alleviate these problems, we propose \textbf{PETAL}: a label-only membership inference attack based on \textbf{PE}r-\textbf{T}oken sem\textbf{A}ntic simi\textbf{L}arity. Specifically, PETAL leverages token-level semantic similarity to approximate output probabilities and subsequently calculate the perplexity. It finally exposes membership based on the common assumption that members are `better' memorized and have smaller perplexity. We conduct extensive experiments on the WikiMIA benchmark and the more challenging MIMIR benchmark. Empirically, our PETAL performs better than the extensions of existing label-only attacks against personalized LLMs and even on par with other advanced logit-based attacks across all metrics on five prevalent open-source LLMs.