Abstract:The aggregation efficiency and accuracy of wireless Federated Learning (FL) are significantly affected by resource constraints, especially in heterogeneous environments where devices exhibit distinct data distributions and communication capabilities. This paper proposes a clustering strategy that leverages prior knowledge similarity to group devices with similar data and communication characteristics, mitigating performance degradation from heterogeneity. On this basis, a novel Cluster- Aware Multi-round Update (CAMU) strategy is proposed, which treats clusters as the basic units and adjusts the local update frequency based on the clustered contribution threshold, effectively reducing update bias and enhancing aggregation accuracy. The theoretical convergence of the CAMU strategy is rigorously validated. Meanwhile, based on the convergence upper bound, the local update frequency and transmission power of each cluster are jointly optimized to achieve an optimal balance between computation and communication resources under constrained conditions, significantly improving the convergence efficiency of FL. Experimental results demonstrate that the proposed method effectively improves the model performance of FL in heterogeneous environments and achieves a better balance between communication cost and computational load under limited resources.
Abstract:Federated learning (FL) is a distributed machine learning paradigm with high efficiency and low communication load, only transmitting parameters or gradients of network. However, the non-independent and identically distributed (Non-IID) data characteristic has a negative impact on this paradigm. Furthermore, the heterogeneity of communication quality will significantly affect the accuracy of parameter transmission, causing a degradation in the performance of the FL system or even preventing its convergence. This letter proposes a dual-segment clustering (DSC) strategy, which first clusters the clients according to the heterogeneous communication conditions and then performs a second clustering by the sample size and label distribution, so as to solve the problem of data and communication heterogeneity. Experimental results show that the DSC strategy proposed in this letter can improve the convergence rate of FL, and has superiority on accuracy in a heterogeneous environment compared with the classical algorithm of cluster.