Abstract:Large Language Models (LLMs) are powerful but prone to hallucinations due to static knowledge. Retrieval-Augmented Generation (RAG) helps by injecting external information, but current methods often are costly, generalize poorly, or ignore the internal knowledge of the model. In this paper, we introduce R1-Searcher++, a novel framework designed to train LLMs to adaptively leverage both internal and external knowledge sources. R1-Searcher++ employs a two-stage training strategy: an initial SFT Cold-start phase for preliminary format learning, followed by RL for Dynamic Knowledge Acquisition. The RL stage uses outcome-supervision to encourage exploration, incorporates a reward mechanism for internal knowledge utilization, and integrates a memorization mechanism to continuously assimilate retrieved information, thereby enriching the model's internal knowledge. By leveraging internal knowledge and external search engine, the model continuously improves its capabilities, enabling efficient retrieval-augmented reasoning. Our experiments demonstrate that R1-Searcher++ outperforms previous RAG and reasoning methods and achieves efficient retrieval. The code is available at https://github.com/RUCAIBox/R1-Searcher-plus.
Abstract:Deep learning models excel in various computer vision tasks but are susceptible to adversarial examples-subtle perturbations in input data that lead to incorrect predictions. This vulnerability poses significant risks in safety-critical applications such as autonomous vehicles, security surveillance, and aircraft health monitoring. While numerous surveys focus on adversarial attacks in image classification, the literature on such attacks in object detection is limited. This paper offers a comprehensive taxonomy of adversarial attacks specific to object detection, reviews existing adversarial robustness evaluation metrics, and systematically assesses open-source attack methods and model robustness. Key observations are provided to enhance the understanding of attack effectiveness and corresponding countermeasures. Additionally, we identify crucial research challenges to guide future efforts in securing automated object detection systems.