Alert button
Picture for Ruiyang Ren

Ruiyang Ren

Alert button

Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation

Jul 23, 2023
Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen, Haifeng Wang

Figure 1 for Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation
Figure 2 for Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation
Figure 3 for Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation
Figure 4 for Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation

Knowledge-intensive tasks (e.g., open-domain question answering (QA)) require a substantial amount of factual knowledge and often rely on external information for assistance. Recently, large language models (LLMs) (e.g., ChatGPT), have demonstrated impressive prowess in solving a wide range of tasks with world knowledge, including knowledge-intensive tasks. However, it remains unclear how well LLMs are able to perceive their factual knowledge boundaries, particularly how they behave when incorporating retrieval augmentation. In this study, we present an initial analysis of the factual knowledge boundaries of LLMs and how retrieval augmentation affects LLMs on open-domain QA. Specially, we focus on three primary research questions and analyze them by examining QA performance, priori judgement and posteriori judgement of LLMs. We show evidence that LLMs possess unwavering confidence in their capabilities to respond to questions and the accuracy of their responses. Furthermore, retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries, thereby improving their judgemental abilities. Additionally, we also find that LLMs have a propensity to rely on the provided retrieval results when formulating answers, while the quality of these results significantly impacts their reliance. The code to reproduce this work is available at https://github.com/RUCAIBox/LLM-Knowledge-Boundary.

Viaarxiv icon

TOME: A Two-stage Approach for Model-based Retrieval

May 18, 2023
Ruiyang Ren, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-Rong Wen, Haifeng Wang

Figure 1 for TOME: A Two-stage Approach for Model-based Retrieval
Figure 2 for TOME: A Two-stage Approach for Model-based Retrieval
Figure 3 for TOME: A Two-stage Approach for Model-based Retrieval
Figure 4 for TOME: A Two-stage Approach for Model-based Retrieval

Recently, model-based retrieval has emerged as a new paradigm in text retrieval that discards the index in the traditional retrieval model and instead memorizes the candidate corpora using model parameters. This design employs a sequence-to-sequence paradigm to generate document identifiers, which enables the complete capture of the relevance between queries and documents and simplifies the classic indexretrieval-rerank pipeline. Despite its attractive qualities, there remain several major challenges in model-based retrieval, including the discrepancy between pre-training and fine-tuning, and the discrepancy between training and inference. To deal with the above challenges, we propose a novel two-stage model-based retrieval approach called TOME, which makes two major technical contributions, including the utilization of tokenized URLs as identifiers and the design of a two-stage generation architecture. We also propose a number of training strategies to deal with the training difficulty as the corpus size increases. Extensive experiments and analysis on MS MARCO and Natural Questions demonstrate the effectiveness of our proposed approach, and we investigate the scaling laws of TOME by examining various influencing factors.

* ACL 2023 
Viaarxiv icon

A Survey of Large Language Models

Apr 27, 2023
Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, Ji-Rong Wen

Figure 1 for A Survey of Large Language Models
Figure 2 for A Survey of Large Language Models
Figure 3 for A Survey of Large Language Models
Figure 4 for A Survey of Large Language Models

Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.

* ongoing work; 58 pages 
Viaarxiv icon

Dense Text Retrieval based on Pretrained Language Models: A Survey

Nov 27, 2022
Wayne Xin Zhao, Jing Liu, Ruiyang Ren, Ji-Rong Wen

Figure 1 for Dense Text Retrieval based on Pretrained Language Models: A Survey
Figure 2 for Dense Text Retrieval based on Pretrained Language Models: A Survey
Figure 3 for Dense Text Retrieval based on Pretrained Language Models: A Survey
Figure 4 for Dense Text Retrieval based on Pretrained Language Models: A Survey

Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.

Viaarxiv icon

A Thorough Examination on Zero-shot Dense Retrieval

Apr 27, 2022
Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qifei Wu, Yuchen Ding, Hua Wu, Haifeng Wang, Ji-Rong Wen

Figure 1 for A Thorough Examination on Zero-shot Dense Retrieval
Figure 2 for A Thorough Examination on Zero-shot Dense Retrieval
Figure 3 for A Thorough Examination on Zero-shot Dense Retrieval
Figure 4 for A Thorough Examination on Zero-shot Dense Retrieval

Recent years have witnessed the significant advance in dense retrieval (DR) based on powerful pre-trained language models (PLM). DR models have achieved excellent performance in several benchmark datasets, while they are shown to be not as competitive as traditional sparse retrieval models (e.g., BM25) in a zero-shot retrieval setting. However, in the related literature, there still lacks a detailed and comprehensive study on zero-shot retrieval. In this paper, we present the first thorough examination of the zero-shot capability of DR models. We aim to identify the key factors and analyze how they affect zero-shot retrieval performance. In particular, we discuss the effect of several key factors related to source training set, analyze the potential bias from the target dataset, and review and compare existing zero-shot DR models. Our findings provide important evidence to better understand and develop zero-shot DR models.

Viaarxiv icon

RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking

Oct 14, 2021
Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang, Ji-Rong Wen

Figure 1 for RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking
Figure 2 for RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking
Figure 3 for RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking
Figure 4 for RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking

In various natural language processing tasks, passage retrieval and passage re-ranking are two key procedures in finding and ranking relevant information. Since both the two procedures contribute to the final performance, it is important to jointly optimize them in order to achieve mutual improvement. In this paper, we propose a novel joint training approach for dense passage retrieval and passage re-ranking. A major contribution is that we introduce the dynamic listwise distillation, where we design a unified listwise training approach for both the retriever and the re-ranker. During the dynamic distillation, the retriever and the re-ranker can be adaptively improved according to each other's relevance information. We also propose a hybrid data augmentation strategy to construct diverse training instances for listwise training approach. Extensive experiments show the effectiveness of our approach on both MSMARCO and Natural Questions datasets. Our code is available at https://github.com/PaddlePaddle/RocketQA.

* EMNLP 2021 
Viaarxiv icon