Abstract:Large reasoning models (LRMs) have demonstrated strong performance on complex reasoning tasks, but often suffer from overthinking, generating redundant content regardless of task difficulty. Inspired by the dual process theory in cognitive science, we propose Adaptive Cognition Policy Optimization (ACPO), a reinforcement learning framework that enables LRMs to achieve efficient reasoning through adaptive cognitive allocation and dynamic system switch. ACPO incorporates two key components: (1) introducing system-aware reasoning tokens to explicitly represent the thinking modes thereby making the model's cognitive process transparent, and (2) integrating online difficulty estimation and token length budget to guide adaptive system switch and reasoning during reinforcement learning. To this end, we propose a two-stage training strategy. The first stage begins with supervised fine-tuning to cold start the model, enabling it to generate reasoning paths with explicit thinking modes. In the second stage, we apply ACPO to further enhance adaptive system switch for difficulty-aware reasoning. Experimental results demonstrate that ACPO effectively reduces redundant reasoning while adaptively adjusting cognitive allocation based on task complexity, achieving efficient hybrid reasoning.
Abstract:Training large reasoning models (LRMs) with reinforcement learning in STEM domains is hindered by the scarcity of high-quality, diverse, and verifiable problem sets. Existing synthesis methods, such as Chain-of-Thought prompting, often generate oversimplified or uncheckable data, limiting model advancement on complex tasks. To address these challenges, we introduce SHARP, a unified approach to Synthesizing High-quality Aligned Reasoning Problems for LRMs reinforcement learning with verifiable rewards (RLVR). SHARP encompasses a strategic set of self-alignment principles -- targeting graduate and Olympiad-level difficulty, rigorous logical consistency, and unambiguous, verifiable answers -- and a structured three-phase framework (Alignment, Instantiation, Inference) that ensures thematic diversity and fine-grained control over problem generation. We implement SHARP by leveraging a state-of-the-art LRM to infer and verify challenging STEM questions, then employ a reinforcement learning loop to refine the model's reasoning through verifiable reward signals. Experiments on benchmarks such as GPQA demonstrate that SHARP-augmented training substantially outperforms existing methods, markedly improving complex reasoning accuracy and pushing LRM performance closer to expert-level proficiency. Our contributions include the SHARP strategy, framework design, end-to-end implementation, and experimental evaluation of its effectiveness in elevating LRM reasoning capabilities.
Abstract:Time series forecasting is a crucial task that predicts the future values of variables based on historical data. Time series forecasting techniques have been developing in parallel with the machine learning community, from early statistical learning methods to current deep learning methods. Although existing methods have made significant progress, they still suffer from two challenges. The mathematical theory of mainstream deep learning-based methods does not establish a clear relation between network sizes and fitting capabilities, and these methods often lack interpretability. To this end, we introduce the Kolmogorov-Arnold Network (KAN) into time series forecasting research, which has better mathematical properties and interpretability. First, we propose the Reversible Mixture of KAN experts (RMoK) model, which is a KAN-based model for time series forecasting. RMoK uses a mixture-of-experts structure to assign variables to KAN experts. Then, we compare performance, integration, and speed between RMoK and various baselines on real-world datasets, and the experimental results show that RMoK achieves the best performance in most cases. And we find the relationship between temporal feature weights and data periodicity through visualization, which roughly explains RMoK's mechanism. Thus, we conclude that KAN and KAN-based models (RMoK) are effective in time series forecasting. Code is available at KAN4TSF: https://github.com/2448845600/KAN4TSF.
Abstract:Current text-to-image editing models often encounter challenges with smoothly manipulating multiple attributes using a single instruction. Taking inspiration from the Chain-of-Thought prompting technique utilized in language models, we present an innovative concept known as Chain-of-Instruct Editing (CoIE), which enhances the capabilities of these models through step-by-step editing using a series of instructions. In particular, in the context of face manipulation, we leverage the contextual learning abilities of a pretrained Large Language Model (LLM), such as GPT-4, to generate a sequence of instructions from the original input, utilizing a purpose-designed 1-shot template. To further improve the precision of each editing step, we conduct fine-tuning on the editing models using our self-constructed instruction-guided face editing dataset, Instruct-CelebA. And additionally, we incorporate a super-resolution module to mitigate the adverse effects of editability and quality degradation. Experimental results across various challenging cases confirm the significant boost in multi-attribute facial image manipulation using chain-of-instruct editing. This is evident in enhanced editing success rates, measured by CLIPSim and Coverage metrics, improved by 17.86% and 85.45% respectively, and heightened controllability indicated by Preserve L1 and Quality metrics, improved by 11.58% and 4.93% respectively.
Abstract:Face clustering tasks can learn hierarchical semantic information from large-scale data, which has the potential to help facilitate face recognition. However, there are few works on this problem. This paper explores it by proposing a joint optimization task of label classification and supervised contrastive clustering to introduce the cluster knowledge to the traditional face recognition task in two ways. We first extend ArcFace with a cluster-guided angular margin to adjust the within-class feature distribution according to the hard level of face clustering. Secondly, we propose a supervised contrastive clustering approach to pull the features to the cluster center and propose the cluster-aligning procedure to align the cluster center and the learnable class center in the classifier for joint training. Finally, extensive qualitative and quantitative experiments on popular facial benchmarks demonstrate the effectiveness of our paradigm and its superiority over the existing approaches to face recognition.