Abstract:Graph Transformers (GTs) have recently demonstrated remarkable performance across diverse domains. By leveraging attention mechanisms, GTs are capable of modeling long-range dependencies and complex structural relationships beyond local neighborhoods. However, their applicable scenarios are still underexplored, this highlights the need to identify when and why they excel. Furthermore, unlike GNNs, which predominantly rely on message-passing mechanisms, GTs exhibit a diverse design space in areas such as positional encoding, attention mechanisms, and graph-specific adaptations. Yet, it remains unclear which of these design choices are truly effective and under what conditions. As a result, the community currently lacks a comprehensive benchmark and library to promote a deeper understanding and further development of GTs. To address this gap, this paper introduces OpenGT, a comprehensive benchmark for Graph Transformers. OpenGT enables fair comparisons and multidimensional analysis by establishing standardized experimental settings and incorporating a broad selection of state-of-the-art GNNs and GTs. Our benchmark evaluates GTs from multiple perspectives, encompassing diverse tasks and datasets with varying properties. Through extensive experiments, our benchmark has uncovered several critical insights, including the difficulty of transferring models across task levels, the limitations of local attention, the efficiency trade-offs in several models, the application scenarios of specific positional encodings, and the preprocessing overhead of some positional encodings. We aspire for this work to establish a foundation for future graph transformer research emphasizing fairness, reproducibility, and generalizability. We have developed an easy-to-use library OpenGT for training and evaluating existing GTs. The benchmark code is available at https://github.com/eaglelab-zju/OpenGT.
Abstract:Traditional camera 3D object detectors are typically trained to recognize a predefined set of known object classes. In real-world scenarios, these detectors may encounter unknown objects outside the training categories and fail to identify them correctly. To address this gap, we present OS-Det3D (Open-set Camera 3D Object Detection), a two-stage training framework enhancing the ability of camera 3D detectors to identify both known and unknown objects. The framework involves our proposed 3D Object Discovery Network (ODN3D), which is specifically trained using geometric cues such as the location and scale of 3D boxes to discover general 3D objects. ODN3D is trained in a class-agnostic manner, and the provided 3D object region proposals inherently come with data noise. To boost accuracy in identifying unknown objects, we introduce a Joint Objectness Selection (JOS) module. JOS selects the pseudo ground truth for unknown objects from the 3D object region proposals of ODN3D by combining the ODN3D objectness and camera feature attention objectness. Experiments on the nuScenes and KITTI datasets demonstrate the effectiveness of our framework in enabling camera 3D detectors to successfully identify unknown objects while also improving their performance on known objects.