Abstract:Within the domain of Massively Multiplayer Online (MMO) economy research, Agent-Based Modeling (ABM) has emerged as a robust tool for analyzing game economics, evolving from rule-based agents to decision-making agents enhanced by reinforcement learning. Nevertheless, existing works encounter significant challenges when attempting to emulate human-like economic activities among agents, particularly regarding agent reliability, sociability, and interpretability. In this study, we take a preliminary step in introducing a novel approach using Large Language Models (LLMs) in MMO economy simulation. Leveraging LLMs' role-playing proficiency, generative capacity, and reasoning aptitude, we design LLM-driven agents with human-like decision-making and adaptability. These agents are equipped with the abilities of role-playing, perception, memory, and reasoning, addressing the aforementioned challenges effectively. Simulation experiments focusing on in-game economic activities demonstrate that LLM-empowered agents can promote emergent phenomena like role specialization and price fluctuations in line with market rules.
Abstract:With the rapid advancement of Large Language Models (LLMs), LLM-based autonomous agents have shown the potential to function as digital employees, such as digital analysts, teachers, and programmers. In this paper, we develop an application-level testbed based on the open-source strategy game "Unciv", which has millions of active players, to enable researchers to build a "data flywheel" for studying human-like agents in the "digital players" task. This "Civilization"-like game features expansive decision-making spaces along with rich linguistic interactions such as diplomatic negotiations and acts of deception, posing significant challenges for LLM-based agents in terms of numerical reasoning and long-term planning. Another challenge for "digital players" is to generate human-like responses for social interaction, collaboration, and negotiation with human players. The open-source project can be found at https:/github.com/fuxiAIlab/CivAgent.
Abstract:Knowledge tracing (KT) aims to assess individuals' evolving knowledge states according to their learning interactions with different exercises in online learning systems (OIS), which is critical in supporting decision-making for subsequent intelligent services, such as personalized learning source recommendation. Existing researchers have broadly studied KT and developed many effective methods. However, most of them assume that students' historical interactions are uniformly distributed in a continuous sequence, ignoring the fact that actual interaction sequences are organized based on a series of quizzes with clear boundaries, where interactions within a quiz are consecutively completed, but interactions across different quizzes are discrete and may be spaced over days. In this paper, we present the Quiz-based Knowledge Tracing (QKT) model to monitor students' knowledge states according to their quiz-based learning interactions. Specifically, as students' interactions within a quiz are continuous and have the same or similar knowledge concepts, we design the adjacent gate followed by a global average pooling layer to capture the intra-quiz short-term knowledge influence. Then, as various quizzes tend to focus on different knowledge concepts, we respectively measure the inter-quiz knowledge substitution by the gated recurrent unit and the inter-quiz knowledge complementarity by the self-attentive encoder with a novel recency-aware attention mechanism. Finally, we integrate the inter-quiz long-term knowledge substitution and complementarity across different quizzes to output students' evolving knowledge states. Extensive experimental results on three public real-world datasets demonstrate that QKT achieves state-of-the-art performance compared to existing methods. Further analyses confirm that QKT is promising in designing more effective quizzes.