Abstract:We present phase subtraction imaging (PSI), a new spatial-temporal beamforming method that enables micrometer level resolution imaging of microvessels in live animals without labels, which are microbubbles in ultrasound super-resolution imaging. Subtraction of relative phase differences between consecutive frames beamformed with mismatched apodizations is used in PSI to overcome the diffraction limit. We validated this method by imaging both the mouse brain and rabbit kidney using different ultrasound probes and scanning machines.
Abstract:The demand for machine learning (ML) model training on edge devices is escalating due to data privacy and personalized service needs. However, we observe that current on-device model training is hampered by the under-utilization of on-device data, due to low training throughput, limited storage and diverse data importance. To improve data resource utilization, we propose a two-stage data selection framework {\sf Titan} to select the most important data batch from streaming data for model training with guaranteed efficiency and effectiveness. Specifically, in the first stage, {\sf Titan} filters out a candidate dataset with potentially high importance in a coarse-grained manner.In the second stage of fine-grained selection, we propose a theoretically optimal data selection strategy to identify the data batch with the highest model performance improvement to current training round. To further enhance time-and-resource efficiency, {\sf Titan} leverages a pipeline to co-execute data selection and model training, and avoids resource conflicts by exploiting idle computing resources. We evaluate {\sf Titan} on real-world edge devices and three representative edge computing tasks with diverse models and data modalities. Empirical results demonstrate that {\sf Titan} achieves up to $43\%$ reduction in training time and $6.2\%$ increase in final accuracy with minor system overhead, such as data processing delay, memory footprint and energy consumption.
Abstract:Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.
Abstract:Large language models (LLMs) have achieved remarkable success across various natural language processing (NLP) tasks. However, recent studies suggest that they still face challenges in performing fundamental NLP tasks essential for deep language understanding, particularly syntactic parsing. In this paper, we conduct an in-depth analysis of LLM parsing capabilities, delving into the specific shortcomings of their parsing results. We find that LLMs may stem from limitations to fully leverage grammar rules in existing treebanks, which restricts their capability to generate valid syntactic structures. To help LLMs acquire knowledge without additional training, we propose a self-correction method that leverages grammar rules from existing treebanks to guide LLMs in correcting previous errors. Specifically, we automatically detect potential errors and dynamically search for relevant rules, offering hints and examples to guide LLMs in making corrections themselves. Experimental results on three datasets with various LLMs, demonstrate that our method significantly improves performance in both in-domain and cross-domain settings on the English and Chinese datasets.
Abstract:Multimodal coreference resolution (MCR) aims to identify mentions referring to the same entity across different modalities, such as text and visuals, and is essential for understanding multimodal content. In the era of rapidly growing mutimodal content and social media, MCR is particularly crucial for interpreting user interactions and bridging text-visual references to improve communication and personalization. However, MCR research for real-world dialogues remains unexplored due to the lack of sufficient data resources.To address this gap, we introduce TikTalkCoref, the first Chinese multimodal coreference dataset for social media in real-world scenarios, derived from the popular Douyin short-video platform. This dataset pairs short videos with corresponding textual dialogues from user comments and includes manually annotated coreference clusters for both person mentions in the text and the coreferential person head regions in the corresponding video frames. We also present an effective benchmark approach for MCR, focusing on the celebrity domain, and conduct extensive experiments on our dataset, providing reliable benchmark results for this newly constructed dataset. We will release the TikTalkCoref dataset to facilitate future research on MCR for real-world social media dialogues.
Abstract:Semi-supervised learning (SSL) has achieved significant progress by leveraging both labeled data and unlabeled data. Existing SSL methods overlook a common real-world scenario when labeled data is extremely scarce, potentially as limited as a single labeled sample in the dataset. General SSL approaches struggle to train effectively from scratch under such constraints, while methods utilizing pre-trained models often fail to find an optimal balance between leveraging limited labeled data and abundant unlabeled data. To address this challenge, we propose Firstly Adapt, Then catEgorize (FATE), a novel SSL framework tailored for scenarios with extremely limited labeled data. At its core, the two-stage prompt tuning paradigm FATE exploits unlabeled data to compensate for scarce supervision signals, then transfers to downstream tasks. Concretely, FATE first adapts a pre-trained model to the feature distribution of downstream data using volumes of unlabeled samples in an unsupervised manner. It then applies an SSL method specifically designed for pre-trained models to complete the final classification task. FATE is designed to be compatible with both vision and vision-language pre-trained models. Extensive experiments demonstrate that FATE effectively mitigates challenges arising from the scarcity of labeled samples in SSL, achieving an average performance improvement of 33.74% across seven benchmarks compared to state-of-the-art SSL methods. Code is available at https://anonymous.4open.science/r/Semi-supervised-learning-BA72.
Abstract:Nowadays, Large Language Models (LLMs) have been gradually employed to solve complex tasks. To face the challenge, task decomposition has become an effective way, which proposes to divide a complex task into multiple simpler subtasks and then solve them separately so that the difficulty of the original task can be reduced. However, the performance of existing task decomposition methods can be suboptimal when the task contains overly complex logic and constraints. In this situation, the solution generated by LLMs may deviate from the original purpose of the task, or contain redundant or even erroneous content. Therefore, inspired by the fact that humans possess two thinking systems including fast thinking and slow thinking, this paper introduces a new task decomposition method termed ``Fast-Slow-Thinking'' (FST), which stimulates LLMs to solve tasks through the cooperation of Fast Thinking (FT) and Slow Thinking (ST) steps. Here FT focuses more on the general and concise aspect of the task, and ST focuses more on the details of the task. In FT, LLMs are prompted to remove the constraints of the original task, therefore simplifying it to a general and concise one. In ST, we recall the constraints removed in FT, so that LLMs can improve the answer generated in FT to meet the requirements of the original task. Therefore, our FST method enables LLMs to consider a complex problem via a human-like cognition process from coarse to fine, the effectiveness of which has been well demonstrated by the experiments on three types of tasks.
Abstract:Differentially private (DP) image synthesis aims to generate synthetic images from a sensitive dataset, alleviating the privacy leakage concerns of organizations sharing and utilizing synthetic images. Although previous methods have significantly progressed, especially in training diffusion models on sensitive images with DP Stochastic Gradient Descent (DP-SGD), they still suffer from unsatisfactory performance. In this work, inspired by curriculum learning, we propose a two-stage DP image synthesis framework, where diffusion models learn to generate DP synthetic images from easy to hard. Unlike existing methods that directly use DP-SGD to train diffusion models, we propose an easy stage in the beginning, where diffusion models learn simple features of the sensitive images. To facilitate this easy stage, we propose to use `central images', simply aggregations of random samples of the sensitive dataset. Intuitively, although those central images do not show details, they demonstrate useful characteristics of all images and only incur minimal privacy costs, thus helping early-phase model training. We conduct experiments to present that on the average of four investigated image datasets, the fidelity and utility metrics of our synthetic images are 33.1% and 2.1% better than the state-of-the-art method.
Abstract:Differentially Private Stochastic Gradient Descent (DP-SGD) is a widely adopted technique for privacy-preserving deep learning. A critical challenge in DP-SGD is selecting the optimal clipping threshold C, which involves balancing the trade-off between clipping bias and noise magnitude, incurring substantial privacy and computing overhead during hyperparameter tuning. In this paper, we propose Dynamic Clipping DP-SGD (DC-SGD), a framework that leverages differentially private histograms to estimate gradient norm distributions and dynamically adjust the clipping threshold C. Our framework includes two novel mechanisms: DC-SGD-P and DC-SGD-E. DC-SGD-P adjusts the clipping threshold based on a percentile of gradient norms, while DC-SGD-E minimizes the expected squared error of gradients to optimize C. These dynamic adjustments significantly reduce the burden of hyperparameter tuning C. The extensive experiments on various deep learning tasks, including image classification and natural language processing, show that our proposed dynamic algorithms achieve up to 9 times acceleration on hyperparameter tuning than DP-SGD. And DC-SGD-E can achieve an accuracy improvement of 10.62% on CIFAR10 than DP-SGD under the same privacy budget of hyperparameter tuning. We conduct rigorous theoretical privacy and convergence analyses, showing that our methods seamlessly integrate with the Adam optimizer. Our results highlight the robust performance and efficiency of DC-SGD, offering a practical solution for differentially private deep learning with reduced computational overhead and enhanced privacy guarantees.
Abstract:Differentially private (DP) image synthesis aims to generate artificial images that retain the properties of sensitive images while protecting the privacy of individual images within the dataset. Despite recent advancements, we find that inconsistent--and sometimes flawed--evaluation protocols have been applied across studies. This not only impedes the understanding of current methods but also hinders future advancements. To address the issue, this paper introduces DPImageBench for DP image synthesis, with thoughtful design across several dimensions: (1) Methods. We study eleven prominent methods and systematically characterize each based on model architecture, pretraining strategy, and privacy mechanism. (2) Evaluation. We include nine datasets and seven fidelity and utility metrics to thoroughly assess them. Notably, we find that a common practice of selecting downstream classifiers based on the highest accuracy on the sensitive test set not only violates DP but also overestimates the utility scores. DPImageBench corrects for these mistakes. (3) Platform. Despite the methods and evaluation protocols, DPImageBench provides a standardized interface that accommodates current and future implementations within a unified framework. With DPImageBench, we have several noteworthy findings. For example, contrary to the common wisdom that pretraining on public image datasets is usually beneficial, we find that the distributional similarity between pretraining and sensitive images significantly impacts the performance of the synthetic images and does not always yield improvements. In addition, adding noise to low-dimensional features, such as the high-level characteristics of sensitive images, is less affected by the privacy budget compared to adding noise to high-dimensional features, like weight gradients. The former methods perform better than the latter under a low privacy budget.