Abstract:Semantic communication (SemCom) significantly improves inter-vehicle interactions in intelligent connected vehicles (ICVs) within limited wireless spectrum. However, the open nature of wireless communications introduces eavesdropping risks. To mitigate this, we propose the Efficient Semantic-aware Encryption (ESAE) mechanism, integrating cryptography into SemCom to secure semantic transmission without complex key management. ESAE leverages semantic reciprocity between source and reconstructed information from past communications to independently generate session keys at both ends, reducing key transmission costs and associated security risks. Additionally, ESAE introduces a semantic-aware key pre-processing method (SA-KP) using the YOLO-v10 model to extract consistent semantics from bit-level diverse yet semantically identical content, ensuring key consistency. Experimental results validate ESAE's effectiveness and feasibility under various wireless conditions, with key performance factors discussed.
Abstract:This paper advocates a fluid antenna system (FAS) assisting long-range communication (LoRa-FAS) for Internet-of-Things (IoT) applications. Our focus is on pilot sequence overhead and placement for FAS. Specifically, we consider embedding pilot sequences within symbols to reduce the equivalent symbol error rate (SER), leveraging the fact that the pilot sequences do not convey source information and correlation detection at the LoRa receiver needs not be performed across the entire symbol. We obtain closed-form approximations for the probability density function (PDF) and cumulative distribution function (CDF) of the FAS channel, assuming perfect channel state information (CSI). Moreover, the approximate SER, hence the bit error rate (BER), of the proposed LoRa-FAS is derived. Simulation results indicate that substantial SER gains can be achieved by FAS within the LoRa framework, even with a limited size of FAS. Furthermore, our analytical results align well with that of the Clarke's exact spatial correlation model. Finally, the correlation factor for the block correlation model should be selected as the proportion of the exact correlation matrix's eigenvalues greater than $1$.
Abstract:We present a theoretical analysis of GPU memory consumption during the training of DeepSeek models such as DeepSeek-v2 and DeepSeek-v3. Our primary objective is to clarify the device-level memory requirements associated with various distributed training configurations. Specifically, we examine critical factors influencing memory usage, including micro-batch size, activation recomputation policies, 3D parallelism, and ZeRO optimizations. It is important to emphasize that the training policies discussed in this report are not representative of DeepSeek's official configurations. Instead, they are explored to provide a deeper understanding of memory dynamics in training of large-scale mixture-of-experts model.
Abstract:A latent denoising semantic communication (SemCom) framework is proposed for robust image transmission over noisy channels. By incorporating a learnable latent denoiser into the receiver, the received signals are preprocessed to effectively remove the channel noise and recover the semantic information, thereby enhancing the quality of the decoded images. Specifically, a latent denoising mapping is established by an iterative residual learning approach to improve the denoising efficiency while ensuring stable performance. Moreover, channel signal-to-noise ratio (SNR) is utilized to estimate and predict the latent similarity score (SS) for conditional denoising, where the number of denoising steps is adapted based on the predicted SS sequence, further reducing the communication latency. Finally, simulations demonstrate that the proposed framework can effectively and efficiently remove the channel noise at various levels and reconstruct visual-appealing images.
Abstract:While just-in-time interventions (JITIs) have effectively targeted common health behaviors, individuals often have unique needs to intervene in personal undesirable actions that can negatively affect physical, mental, and social well-being. We present WatchGuardian, a smartwatch-based JITI system that empowers users to define custom interventions for these personal actions with a small number of samples. For the model to detect new actions based on limited new data samples, we developed a few-shot learning pipeline that finetuned a pre-trained inertial measurement unit (IMU) model on public hand-gesture datasets. We then designed a data augmentation and synthesis process to train additional classification layers for customization. Our offline evaluation with 26 participants showed that with three, five, and ten examples, our approach achieved an average accuracy of 76.8%, 84.7%, and 87.7%, and an F1 score of 74.8%, 84.2%, and 87.2% We then conducted a four-hour intervention study to compare WatchGuardian against a rule-based intervention. Our results demonstrated that our system led to a significant reduction by 64.0 +- 22.6% in undesirable actions, substantially outperforming the baseline by 29.0%. Our findings underscore the effectiveness of a customizable, AI-driven JITI system for individuals in need of behavioral intervention in personal undesirable actions. We envision that our work can inspire broader applications of user-defined personalized intervention with advanced AI solutions.
Abstract:This paper introduces WirelessGPT, a pioneering foundation model specifically designed for multi-task learning in wireless communication and sensing. Specifically, WirelessGPT leverages large-scale wireless channel datasets for unsupervised pretraining and extracting universal channel representations, which captures complex spatiotemporal dependencies. In fact,this task-agnostic design adapts WirelessGPT seamlessly to a wide range of downstream tasks, using a unified representation with minimal fine-tuning. By unifying communication and sensing functionalities, WirelessGPT addresses the limitations of task-specific models, offering a scalable and efficient solution for integrated sensing and communication (ISAC). With an initial parameter size of around 80 million, WirelessGPT demonstrates significant improvements over conventional methods and smaller AI models, reducing reliance on large-scale labeled data. As the first foundation model capable of supporting diverse tasks across different domains, WirelessGPT establishes a new benchmark, paving the way for future advancements in multi-task wireless systems.
Abstract:We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
Abstract:In recent years, Semantic Communication (SemCom), which aims to achieve efficient and reliable transmission of meaning between agents, has garnered significant attention from both academia and industry. To ensure the security of communication systems, encryption techniques are employed to safeguard confidentiality and integrity. However, traditional cryptography-based encryption algorithms encounter obstacles when applied to SemCom. Motivated by this, this paper explores the feasibility of applying homomorphic encryption to SemCom. Initially, we review the encryption algorithms utilized in mobile communication systems and analyze the challenges associated with their application to SemCom. Subsequently, we employ scale-invariant feature transform to demonstrate that semantic features can be preserved in homomorphic encrypted ciphertext. Based on this finding, we propose a task-oriented SemCom scheme secured through homomorphic encryption. We design the privacy preserved deep joint source-channel coding (JSCC) encoder and decoder, and the frequency of key updates can be adjusted according to service requirements without compromising transmission performance. Simulation results validate that, when compared to plaintext images, the proposed scheme can achieve almost the same classification accuracy performance when dealing with homomorphic ciphertext images. Furthermore, we provide potential future research directions for homomorphic encrypted SemCom.
Abstract:Semantic communication (SemCom) is regarded as a promising and revolutionary technology in 6G, aiming to transcend the constraints of ``Shannon's trap" by filtering out redundant information and extracting the core of effective data. Compared to traditional communication paradigms, SemCom offers several notable advantages, such as reducing the burden on data transmission, enhancing network management efficiency, and optimizing resource allocation. Numerous researchers have extensively explored SemCom from various perspectives, including network architecture, theoretical analysis, potential technologies, and future applications. However, as SemCom continues to evolve, a multitude of security and privacy concerns have arisen, posing threats to the confidentiality, integrity, and availability of SemCom systems. This paper presents a comprehensive survey of the technologies that can be utilized to secure SemCom. Firstly, we elaborate on the entire life cycle of SemCom, which includes the model training, model transfer, and semantic information transmission phases. Then, we identify the security and privacy issues that emerge during these three stages. Furthermore, we summarize the techniques available to mitigate these security and privacy threats, including data cleaning, robust learning, defensive strategies against backdoor attacks, adversarial training, differential privacy, cryptography, blockchain technology, model compression, and physical-layer security. Lastly, this paper outlines future research directions to guide researchers in related fields.
Abstract:Sepsis is an organ dysfunction caused by a deregulated immune response to an infection. Early sepsis prediction and identification allow for timely intervention, leading to improved clinical outcomes. Clinical calculators (e.g., the six-organ dysfunction assessment of SOFA) play a vital role in sepsis identification within clinicians' workflow, providing evidence-based risk assessments essential for sepsis diagnosis. However, artificial intelligence (AI) sepsis prediction models typically generate a single sepsis risk score without incorporating clinical calculators for assessing organ dysfunctions, making the models less convincing and transparent to clinicians. To bridge the gap, we propose to mimic clinicians' workflow with a novel framework SepsisCalc to integrate clinical calculators into the predictive model, yielding a clinically transparent and precise model for utilization in clinical settings. Practically, clinical calculators usually combine information from multiple component variables in Electronic Health Records (EHR), and might not be applicable when the variables are (partially) missing. We mitigate this issue by representing EHRs as temporal graphs and integrating a learning module to dynamically add the accurately estimated calculator to the graphs. Experimental results on real-world datasets show that the proposed model outperforms state-of-the-art methods on sepsis prediction tasks. Moreover, we developed a system to identify organ dysfunctions and potential sepsis risks, providing a human-AI interaction tool for deployment, which can help clinicians understand the prediction outputs and prepare timely interventions for the corresponding dysfunctions, paving the way for actionable clinical decision-making support for early intervention.