Abstract:Complex Question Answering (QA) is a fundamental and challenging task in NLP. While large language models (LLMs) exhibit impressive performance in QA, they suffer from significant performance degradation when facing complex and abstract QA tasks due to insufficient reasoning capabilities. Works such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) aim to enhance LLMs' reasoning abilities, but they face issues such as in-layer redundancy in tree structures and single paths in chain structures. Although some studies utilize Retrieval-Augmented Generation (RAG) methods to assist LLMs in reasoning, the challenge of effectively utilizing large amounts of information involving multiple entities and hops remains critical. To address this, we propose the Matrix of Thought (MoT), a novel and efficient LLM thought structure. MoT explores the problem in both horizontal and vertical dimensions through the "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep-level thinking, reducing redundancy within the column cells and enhancing reasoning capabilities. Furthermore, we develop a fact-correction mechanism by constructing knowledge units from retrieved knowledge graph triples and raw text to enhance the initial knowledge for LLM reasoning and correct erroneous answers. This leads to the development of an efficient and accurate QA framework (MTQA). Experimental results show that our framework outperforms state-of-the-art methods on four widely-used datasets in terms of F1 and EM scores, with reasoning time only 14.4\% of the baseline methods, demonstrating both its efficiency and accuracy. The code for this framework is available at https://github.com/lyfiter/mtqa.
Abstract:Domain shift, characterized by degraded model performance during transition from labeled source domains to unlabeled target domains, poses a persistent challenge for deploying deep learning systems. Current unsupervised domain adaptation (UDA) methods predominantly rely on fine-tuning feature extractors - an approach limited by inefficiency, reduced interpretability, and poor scalability to modern architectures. Our analysis reveals that models pretrained on large-scale data exhibit domain-invariant geometric patterns in their feature space, characterized by intra-class clustering and inter-class separation, thereby preserving transferable discriminative structures. These findings indicate that domain shifts primarily manifest as boundary misalignment rather than feature degradation. Unlike fine-tuning entire pre-trained models - which risks introducing unpredictable feature distortions - we propose the Feature-space Planes Searcher (FPS): a novel domain adaptation framework that optimizes decision boundaries by leveraging these geometric patterns while keeping the feature encoder frozen. This streamlined approach enables interpretative analysis of adaptation while substantially reducing memory and computational costs through offline feature extraction, permitting full-dataset optimization in a single computation cycle. Evaluations on public benchmarks demonstrate that FPS achieves competitive or superior performance to state-of-the-art methods. FPS scales efficiently with multimodal large models and shows versatility across diverse domains including protein structure prediction, remote sensing classification, and earthquake detection. We anticipate FPS will provide a simple, effective, and generalizable paradigm for transfer learning, particularly in domain adaptation tasks. .
Abstract:The rapid advancement of large language models (LLMs) has transformed the landscape of agentic information seeking capabilities through the integration of tools such as search engines and web browsers. However, current mainstream approaches for enabling LLM web search proficiency face significant challenges: supervised fine-tuning struggles with data production in open-search domains, while RL converges quickly, limiting their data utilization efficiency. To address these issues, we propose EvolveSearch, a novel iterative self-evolution framework that combines SFT and RL to enhance agentic web search capabilities without any external human-annotated reasoning data. Extensive experiments on seven multi-hop question-answering (MHQA) benchmarks demonstrate that EvolveSearch consistently improves performance across iterations, ultimately achieving an average improvement of 4.7\% over the current state-of-the-art across seven benchmarks, opening the door to self-evolution agentic capabilities in open web search domains.
Abstract:The integration of intelligent and connected technologies in modern vehicles, while offering enhanced functionalities through Electronic Control Unit and interfaces like OBD-II and telematics, also exposes the vehicle's in-vehicle network (IVN) to potential cyberattacks. In this paper, we consider a specific type of cyberattack known as the injection attack. As demonstrated by empirical data from real-world cybersecurity adversarial competitions(available at https://mimic2024.xctf.org.cn/race/qwmimic2024 ), these injection attacks have excitation effect over time, gradually manipulating network traffic and disrupting the vehicle's normal functioning, ultimately compromising both its stability and safety. To profile the abnormal behavior of attackers, we propose a novel injection attack detector to extract long-term features of attack behavior. Specifically, we first provide a theoretical analysis of modeling the time-excitation effects of the attack using Multi-Dimensional Hawkes Process (MDHP). A gradient descent solver specifically tailored for MDHP, MDHP-GDS, is developed to accurately estimate optimal MDHP parameters. We then propose an injection attack detector, MDHP-Net, which integrates optimal MDHP parameters with MDHP-LSTM blocks to enhance temporal feature extraction. By introducing MDHP parameters, MDHP-Net captures complex temporal features that standard Long Short-Term Memory (LSTM) cannot, enriching temporal dependencies within our customized structure. Extensive evaluations demonstrate the effectiveness of our proposed detection approach.
Abstract:Cyber threat intelligence is a critical tool that many organizations and individuals use to protect themselves from sophisticated, organized, persistent, and weaponized cyber attacks. However, few studies have focused on the quality assessment of threat intelligence provided by intelligence platforms, and this work still requires manual analysis by cybersecurity experts. In this paper, we propose a knowledge graph-based verifier, a novel Cyber Threat Intelligence (CTI) quality assessment framework that combines knowledge graphs and Large Language Models (LLMs). Our approach introduces LLMs to automatically extract OSCTI key claims to be verified and utilizes a knowledge graph consisting of paragraphs for fact-checking. This method differs from the traditional way of constructing complex knowledge graphs with entities as nodes. By constructing knowledge graphs with paragraphs as nodes and semantic similarity as edges, it effectively enhances the semantic understanding ability of the model and simplifies labeling requirements. Additionally, to fill the gap in the research field, we created and made public the first dataset for threat intelligence assessment from heterogeneous sources. To the best of our knowledge, this work is the first to create a dataset on threat intelligence reliability verification, providing a reference for future research. Experimental results show that KGV (Knowledge Graph Verifier) significantly improves the performance of LLMs in intelligence quality assessment. Compared with traditional methods, we reduce a large amount of data annotation while the model still exhibits strong reasoning capabilities. Finally, our method can achieve XXX accuracy in network threat assessment.
Abstract:In clinical treatment, identifying potential adverse reactions of drugs can help assist doctors in making medication decisions. In response to the problems in previous studies that features are high-dimensional and sparse, independent prediction models need to be constructed for each adverse reaction of drugs, and the prediction accuracy is low, this paper develops an adverse drug reaction prediction model based on knowledge graph embedding and deep learning, which can predict experimental results. Unified prediction of adverse drug reactions covered. Knowledge graph embedding technology can fuse the associated information between drugs and alleviate the shortcomings of high-dimensional sparsity in feature matrices, and the efficient training capabilities of deep learning can improve the prediction accuracy of the model. This article builds an adverse drug reaction knowledge graph based on drug feature data; by analyzing the embedding effect of the knowledge graph under different embedding strategies, the best embedding strategy is selected to obtain sample vectors; and then a convolutional neural network model is constructed to predict adverse reactions. The results show that under the DistMult embedding model and 400-dimensional embedding strategy, the convolutional neural network model has the best prediction effect; the average accuracy, F_1 score, recall rate and area under the curve of repeated experiments are better than the methods reported in the literature. The obtained prediction model has good prediction accuracy and stability, and can provide an effective reference for later safe medication guidance.
Abstract:The rapid dissemination of information through social media and the Internet has posed a significant challenge for fact-checking, among others in identifying check-worthy claims that fact-checkers should pay attention to, i.e. filtering claims needing fact-checking from a large pool of sentences. This challenge has stressed the need to focus on determining the priority of claims, specifically which claims are worth to be fact-checked. Despite advancements in this area in recent years, the application of large language models (LLMs), such as GPT, has only recently drawn attention in studies. However, many open-source LLMs remain underexplored. Therefore, this study investigates the application of eight prominent open-source LLMs with fine-tuning and prompt engineering to identify check-worthy statements from political transcriptions. Further, we propose a two-step data pruning approach to automatically identify high-quality training data instances for effective learning. The efficiency of our approach is demonstrated through evaluations on the English language dataset as part of the check-worthiness estimation task of CheckThat! 2024. Further, the experiments conducted with data pruning demonstrate that competitive performance can be achieved with only about 44\% of the training data. Our team ranked first in the check-worthiness estimation task in the English language.
Abstract:The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches.
Abstract:The prevalence of mobile technology offers unique opportunities for addressing healthcare challenges, especially for individuals with visual impairments. This paper explores the development and implementation of a deep learning-based mobile application designed to assist blind and visually impaired individuals in real-time pill identification. Utilizing the YOLO framework, the application aims to accurately recognize and differentiate between various pill types through real-time image processing on mobile devices. The system incorporates Text-to- Speech (TTS) to provide immediate auditory feedback, enhancing usability and independence for visually impaired users. Our study evaluates the application's effectiveness in terms of detection accuracy and user experience, highlighting its potential to improve medication management and safety among the visually impaired community. Keywords-Deep Learning; YOLO Framework; Mobile Application; Visual Impairment; Pill Identification; Healthcare
Abstract:To address the issues of limited samples, time-consuming feature design, and low accuracy in detection and classification of breast cancer pathological images, a breast cancer image classification model algorithm combining deep learning and transfer learning is proposed. This algorithm is based on the DenseNet structure of deep neural networks, and constructs a network model by introducing attention mechanisms, and trains the enhanced dataset using multi-level transfer learning. Experimental results demonstrate that the algorithm achieves an efficiency of over 84.0\% in the test set, with a significantly improved classification accuracy compared to previous models, making it applicable to medical breast cancer detection tasks.