Abstract:Mobile GUI agents have shown strong potential in real-world automation and practical applications. However, most existing agents remain reactive, making decisions mainly from current screen, which limits their performance on long-horizon tasks. Building a world model from repeated interactions enables forecasting action outcomes and supports better decision making for mobile GUI agents. This is challenging because the model must predict post-action states with spatial awareness while remaining efficient enough for practical deployment. In this paper, we propose MobileDreamer, an efficient world-model-based lookahead framework to equip the GUI agents based on the future imagination provided by the world model. It consists of textual sketch world model and rollout imagination for GUI agent. Textual sketch world model forecasts post-action states through a learning process to transform digital images into key task-related sketches, and designs a novel order-invariant learning strategy to preserve the spatial information of GUI elements. The rollout imagination strategy for GUI agent optimizes the action-selection process by leveraging the prediction capability of world model. Experiments on Android World show that MobileDreamer achieves state-of-the-art performance and improves task success by 5.25%. World model evaluations further verify that our textual sketch modeling accurately forecasts key GUI elements.
Abstract:Multimodal Large Language Models (MLLMs) demonstrate significant potential but remain brittle in complex, long-chain visual reasoning tasks. A critical failure mode is "visual forgetting", where models progressively lose visual grounding as reasoning extends, a phenomenon aptly described as "think longer, see less". We posit this failure stems from current training paradigms prematurely entangling two distinct cognitive skills: (1) abstract logical reasoning "how-to-think") and (2) strategic visual perception ("when-to-look"). This creates a foundational cold-start deficiency -- weakening abstract reasoning -- and a strategic perception deficit, as models lack a policy for when to perceive. In this paper, we propose a novel curriculum-based framework to disentangle these skills. First, we introduce a disentangled Supervised Fine-Tuning (SFT) curriculum that builds a robust abstract reasoning backbone on text-only data before anchoring it to vision with a novel Perception-Grounded Chain-of-Thought (PG-CoT) paradigm. Second, we resolve the strategic perception deficit by formulating timing as a reinforcement learning problem. We design a Pivotal Perception Reward that teaches the model when to look by coupling perceptual actions to linguistic markers of cognitive uncertainty (e.g., "wait", "verify"), thereby learning an autonomous grounding policy. Our contributions include the formalization of these two deficiencies and the development of a principled, two-stage framework to address them, transforming the model from a heuristic-driven observer to a strategic, grounded reasoner. \textbf{Code}: \url{https://github.com/gaozilve-max/learning-when-to-look}.




Abstract:Scaling test-time computation improves large language model performance without additional training. Recent work demonstrates that techniques such as repeated sampling, self-verification, and self-reflection can significantly enhance task success by allocating more inference-time compute. However, applying these techniques across multiple agents in a multi-agent system is difficult: there does not exist principled mechanisms to allocate compute to foster collaboration among agents, to extend test-time scaling to collaborative interactions, or to distribute compute across agents under explicit budget constraints. To address this gap, we propose FutureWeaver, a framework for planning and optimizing test-time compute allocation in multi-agent systems under fixed budgets. FutureWeaver introduces modularized collaboration, formalized as callable functions that encapsulate reusable multi-agent workflows. These modules are automatically derived through self-play reflection by abstracting recurring interaction patterns from past trajectories. Building on these modules, FutureWeaver employs a dual-level planning architecture that optimizes compute allocation by reasoning over the current task state while also speculating on future steps. Experiments on complex agent benchmarks demonstrate that FutureWeaver consistently outperforms baselines across diverse budget settings, validating its effectiveness for multi-agent collaboration in inference-time optimization.
Abstract:Inspired by recent advancements in LLM reasoning, the field of multimodal reasoning has seen remarkable progress, achieving significant performance gains on intricate tasks such as mathematical problem-solving. Despite this progress, current multimodal large reasoning models exhibit two key limitations. They tend to employ computationally expensive reasoning even for simple queries, leading to inefficiency. Furthermore, this focus on specialized reasoning often impairs their broader, more general understanding capabilities. In this paper, we propose Metis-HOME: a Hybrid Optimized Mixture-of-Experts framework designed to address this trade-off. Metis-HOME enables a ''Hybrid Thinking'' paradigm by structuring the original dense model into two distinct expert branches: a thinking branch tailored for complex, multi-step reasoning, and a non-thinking branch optimized for rapid, direct inference on tasks like general VQA and OCR. A lightweight, trainable router dynamically allocates queries to the most suitable expert. We instantiate Metis-HOME by adapting the Qwen2.5-VL-7B into an MoE architecture. Comprehensive evaluations reveal that our approach not only substantially enhances complex reasoning abilities but also improves the model's general capabilities, reversing the degradation trend observed in other reasoning-specialized models. Our work establishes a new paradigm for building powerful and versatile MLLMs, effectively resolving the prevalent reasoning-vs-generalization dilemma.
Abstract:Recent advancements in large language models (LLMs) have witnessed a surge in the development of advanced reasoning paradigms, which are now being integrated into multimodal large language models (MLLMs). However, existing approaches often fall short: methods solely employing reinforcement learning (RL) can struggle with sample inefficiency and activating entirely absent reasoning capabilities, while conventional pipelines that initiate with a cold-start supervised fine-tuning (SFT) phase before RL may restrict the model's exploratory capacity and face suboptimal convergence. In this work, we introduce \textbf{Metis-RISE} (\textbf{R}L \textbf{I}ncentivizes and \textbf{S}FT \textbf{E}nhances) for multimodal reasoning model learning. Unlike conventional approaches, Metis-RISE distinctively omits an initial SFT stage, beginning instead with an RL phase (e.g., using a Group Relative Policy Optimization variant) to incentivize and activate the model's latent reasoning capacity. Subsequently, the targeted SFT stage addresses two key challenges identified during RL: (1) \textit{inefficient trajectory sampling} for tasks where the model possesses but inconsistently applies correct reasoning, which we tackle using self-distilled reasoning trajectories from the RL model itself; and (2) \textit{fundamental capability absence}, which we address by injecting expert-augmented knowledge for prompts where the model entirely fails. This strategic application of RL for incentivization followed by SFT for enhancement forms the core of Metis-RISE, leading to two versions of our MLLMs (7B and 72B parameters). Evaluations on the OpenCompass Multimodal Reasoning Leaderboard demonstrate that both models achieve state-of-the-art performance among similar-sized models, with the 72B version ranking fourth overall.




Abstract:High-resolution image (HRI) understanding aims to process images with a large number of pixels, such as pathological images and agricultural aerial images, both of which can exceed 1 million pixels. Vision Large Language Models (VLMs) can allegedly handle HRIs, however, there is a lack of a comprehensive benchmark for VLMs to evaluate HRI understanding. To address this gap, we introduce HRScene, a novel unified benchmark for HRI understanding with rich scenes. HRScene incorporates 25 real-world datasets and 2 synthetic diagnostic datasets with resolutions ranging from 1,024 $\times$ 1,024 to 35,503 $\times$ 26,627. HRScene is collected and re-annotated by 10 graduate-level annotators, covering 25 scenarios, ranging from microscopic to radiology images, street views, long-range pictures, and telescope images. It includes HRIs of real-world objects, scanned documents, and composite multi-image. The two diagnostic evaluation datasets are synthesized by combining the target image with the gold answer and distracting images in different orders, assessing how well models utilize regions in HRI. We conduct extensive experiments involving 28 VLMs, including Gemini 2.0 Flash and GPT-4o. Experiments on HRScene show that current VLMs achieve an average accuracy of around 50% on real-world tasks, revealing significant gaps in HRI understanding. Results on synthetic datasets reveal that VLMs struggle to effectively utilize HRI regions, showing significant Regional Divergence and lost-in-middle, shedding light on future research.




Abstract:Fairness has emerged as a critical consideration in the landscape of machine learning algorithms, particularly as AI continues to transform decision-making across societal domains. To ensure that these algorithms are free from bias and do not discriminate against individuals based on sensitive attributes such as gender and race, the field of algorithmic bias has introduced various fairness concepts, along with methodologies to achieve these notions in different contexts. Despite the rapid advancement, not all sectors have embraced these fairness principles to the same extent. One specific sector that merits attention in this regard is insurance. Within the realm of insurance pricing, fairness is defined through a distinct and specialized framework. Consequently, achieving fairness according to established notions does not automatically ensure fair pricing in insurance. In particular, regulators are increasingly emphasizing transparency in pricing algorithms and imposing constraints on insurance companies on the collection and utilization of sensitive consumer attributes. These factors present additional challenges in the implementation of fairness in pricing algorithms. To address these complexities and comply with regulatory demands, we propose an efficient method for constructing fair models that are tailored to the insurance domain, using only privatized sensitive attributes. Notably, our approach ensures statistical guarantees, does not require direct access to sensitive attributes, and adapts to varying transparency requirements, addressing regulatory demands while ensuring fairness in insurance pricing.




Abstract:While significant progress has been made on the text-to-SQL task, recent solutions repeatedly encode the same database schema for every question, resulting in unnecessary high inference cost and often overlooking crucial database knowledge. To address these issues, we propose You Only Read Once (YORO), a novel paradigm that directly internalizes database knowledge into the parametric knowledge of a text-to-SQL model during training and eliminates the need for schema encoding during inference. YORO significantly reduces the input token length by 66%-98%. Despite its shorter inputs, our empirical results demonstrate YORO's competitive performances with traditional systems on three benchmarks as well as its significant outperformance on large databases. Furthermore, YORO excels in handling questions with challenging value retrievals such as abbreviation.




Abstract:Despite Retrieval-Augmented Generation (RAG) has shown promising capability in leveraging external knowledge, a comprehensive evaluation of RAG systems is still challenging due to the modular nature of RAG, evaluation of long-form responses and reliability of measurements. In this paper, we propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules. Meta evaluation verifies that RAGChecker has significantly better correlations with human judgments than other evaluation metrics. Using RAGChecker, we evaluate 8 RAG systems and conduct an in-depth analysis of their performance, revealing insightful patterns and trade-offs in the design choices of RAG architectures. The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.




Abstract:Unified Sequence Labeling that articulates different sequence labeling problems such as Named Entity Recognition, Relation Extraction, Semantic Role Labeling, etc. in a generalized sequence-to-sequence format opens up the opportunity to make the maximum utilization of large language model knowledge toward structured prediction. Unfortunately, this requires formatting them into specialized augmented format unknown to the base pretrained language model (PLMs) necessitating finetuning to the target format. This significantly bounds its usefulness in data-limited settings where finetuning large models cannot properly generalize to the target format. To address this challenge and leverage PLM knowledge effectively, we propose FISH-DIP, a sample-aware dynamic sparse finetuning strategy that selectively focuses on a fraction of parameters, informed by feedback from highly regressing examples, during the fine-tuning process. By leveraging the dynamism of sparsity, our approach mitigates the impact of well-learned samples and prioritizes underperforming instances for improvement in generalization. Across five tasks of sequence labeling, we demonstrate that FISH-DIP can smoothly optimize the model in low resource settings offering upto 40% performance improvements over full fine-tuning depending on target evaluation settings. Also, compared to in-context learning and other parameter-efficient fine-tuning approaches, FISH-DIP performs comparably or better, notably in extreme low-resource settings.