Abstract:Paper weakness identification using single-agent or multi-agent LLMs has attracted increasing attention, yet existing approaches exhibit key limitations. Many multi-agent systems simulate human roles at a surface level, missing the underlying criteria that lead experts to assess complementary intellectual aspects of a paper. Moreover, prior methods implicitly assume identified weaknesses are valid, ignoring reviewer bias, misunderstanding, and the critical role of author rebuttals in validating review quality. Finally, most systems output unranked weakness lists, rather than prioritizing the most consequential issues for users. In this work, we propose DIAGPaper, a novel multi-agent framework that addresses these challenges through three tightly integrated modules. The customizer module simulates human-defined review criteria and instantiates multiple reviewer agents with criterion-specific expertise. The rebuttal module introduces author agents that engage in structured debate with reviewer agents to validate and refine proposed weaknesses. The prioritizer module learns from large-scale human review practices to assess the severity of validated weaknesses and surfaces the top-K severest ones to users. Experiments on two benchmarks, AAAR and ReviewCritique, demonstrate that DIAGPaper substantially outperforms existing methods by producing more valid and more paper-specific weaknesses, while presenting them in a user-oriented, prioritized manner.




Abstract:High-resolution image (HRI) understanding aims to process images with a large number of pixels, such as pathological images and agricultural aerial images, both of which can exceed 1 million pixels. Vision Large Language Models (VLMs) can allegedly handle HRIs, however, there is a lack of a comprehensive benchmark for VLMs to evaluate HRI understanding. To address this gap, we introduce HRScene, a novel unified benchmark for HRI understanding with rich scenes. HRScene incorporates 25 real-world datasets and 2 synthetic diagnostic datasets with resolutions ranging from 1,024 $\times$ 1,024 to 35,503 $\times$ 26,627. HRScene is collected and re-annotated by 10 graduate-level annotators, covering 25 scenarios, ranging from microscopic to radiology images, street views, long-range pictures, and telescope images. It includes HRIs of real-world objects, scanned documents, and composite multi-image. The two diagnostic evaluation datasets are synthesized by combining the target image with the gold answer and distracting images in different orders, assessing how well models utilize regions in HRI. We conduct extensive experiments involving 28 VLMs, including Gemini 2.0 Flash and GPT-4o. Experiments on HRScene show that current VLMs achieve an average accuracy of around 50% on real-world tasks, revealing significant gaps in HRI understanding. Results on synthetic datasets reveal that VLMs struggle to effectively utilize HRI regions, showing significant Regional Divergence and lost-in-middle, shedding light on future research.




Abstract:Numerous studies have assessed the proficiency of AI systems, particularly large language models (LLMs), in facilitating everyday tasks such as email writing, question answering, and creative content generation. However, researchers face unique challenges and opportunities in leveraging LLMs for their own work, such as brainstorming research ideas, designing experiments, and writing or reviewing papers. In this study, we introduce AAAR-1.0, a benchmark dataset designed to evaluate LLM performance in three fundamental, expertise-intensive research tasks: (i) EquationInference, assessing the correctness of equations based on the contextual information in paper submissions; (ii) ExperimentDesign, designing experiments to validate research ideas and solutions; (iii) PaperWeakness, identifying weaknesses in paper submissions; and (iv) REVIEWCRITIQUE, identifying each segment in human reviews is deficient or not. AAAR-1.0 differs from prior benchmarks in two key ways: first, it is explicitly research-oriented, with tasks requiring deep domain expertise; second, it is researcher-oriented, mirroring the primary activities that researchers engage in on a daily basis. An evaluation of both open-source and proprietary LLMs reveals their potential as well as limitations in conducting sophisticated research tasks. We will keep iterating AAAR-1.0 to new versions.