Image restoration aims to recover the high-quality images from their degraded observations. Since most existing methods have been dedicated into single degradation removal, they may not yield optimal results on other types of degradations, which do not satisfy the applications in real world scenarios. In this paper, we propose a novel data ingredient-oriented approach that leverages prompt-based learning to enable a single model to efficiently tackle multiple image degradation tasks. Specifically, we utilize a encoder to capture features and introduce prompts with degradation-specific information to guide the decoder in adaptively recovering images affected by various degradations. In order to model the local invariant properties and non-local information for high-quality image restoration, we combined CNNs operations and Transformers. Simultaneously, we made several key designs in the Transformer blocks (multi-head rearranged attention with prompts and simple-gate feed-forward network) to reduce computational requirements and selectively determines what information should be persevered to facilitate efficient recovery of potentially sharp images. Furthermore, we incorporate a feature fusion mechanism further explores the multi-scale information to improve the aggregated features. The resulting tightly interlinked hierarchy architecture, named as CAPTNet, despite being designed to handle different types of degradations, extensive experiments demonstrate that our method performs competitively to the task-specific algorithms.
One technology that has the potential to improve wireless communications in years to come is integrated sensing and communication (ISAC). In this study, we take advantage of reconfigurable intelligent surface's (RIS) potential advantages to achieve ISAC while using the same frequency and resources. Specifically, by using the reflecting elements, the RIS dynamically modifies the radio waves' strength or phase in order to change the environment for radio transmission and increase the ISAC systems' transmission rate. We investigate a single cell downlink communication situation with RIS assistance. Combining the ISAC base station's (BS) beamforming with RIS's discrete phase shift optimization, while guaranteeing the sensing signal, The aim of optimizing the sum rate is specified. We take advantage of alternating maximization to find practical solutions with dividing the challenge into two minor issues. The first power allocation subproblem is non-convex that CVX solves by converting it to convex. A local search strategy is used to solve the second subproblem of phase shift optimization. According to the results of the simulation, using RIS with adjusted phase shifts can significantly enhance the ISAC system's performance.
Multi-task visual perception has a wide range of applications in scene understanding such as autonomous driving. In this work, we devise an efficient unified framework to solve multiple common perception tasks, including instance segmentation, semantic segmentation, monocular 3D detection, and depth estimation. Simply sharing the same visual feature representations for these tasks impairs the performance of tasks, while independent task-specific feature extractors lead to parameter redundancy and latency. Thus, we design two feature-merge branches to learn feature basis, which can be useful to, and thus shared by, multiple perception tasks. Then, each task takes the corresponding feature basis as the input of the prediction task head to fulfill a specific task. In particular, one feature merge branch is designed for instance-level recognition the other for dense predictions. To enhance inter-branch communication, the instance branch passes pixel-wise spatial information of each instance to the dense branch using efficient dynamic convolution weighting. Moreover, a simple but effective dynamic routing mechanism is proposed to isolate task-specific features and leverage common properties among tasks. Our proposed framework, termed D2BNet, demonstrates a unique approach to parameter-efficient predictions for multi-task perception. In addition, as tasks benefit from co-training with each other, our solution achieves on par results on partially labeled settings on nuScenes and outperforms previous works for 3D detection and depth estimation on the Cityscapes dataset with full supervision.
Pixel-level Scene Understanding is one of the fundamental problems in computer vision, which aims at recognizing object classes, masks and semantics of each pixel in the given image. Since the real-world is actually video-based rather than a static state, learning to perform video semantic segmentation is more reasonable and practical for realistic applications. In this paper, we adopt Mask2Former as architecture and ViT-Adapter as backbone. Then, we propose a recyclable semi-supervised training method based on multi-model ensemble. Our method achieves the mIoU scores of 62.97% and 65.83% on Development test and final test respectively. Finally, we obtain the 2nd place in the Video Scene Parsing in the Wild Challenge at CVPR 2023.
Image restoration is the task of aiming to obtain a high-quality image from a corrupt input image, such as deblurring and deraining. In image restoration, it is typically necessary to maintain a complex balance between spatial details and contextual information. Although a multi-stage network can optimally balance these competing goals and achieve significant performance, this also increases the system's complexity. In this paper, we propose a mountain-shaped single-stage design base on a simple U-Net architecture, which removes or replaces unnecessary nonlinear activation functions to achieve the above balance with low system complexity. Specifically, we propose a feature fusion middleware (FFM) mechanism as an information exchange component between the encoder-decoder architectural levels. It seamlessly integrates upper-layer information into the adjacent lower layer, sequentially down to the lowest layer. Finally, all information is fused into the original image resolution manipulation level. This preserves spatial details and integrates contextual information, ensuring high-quality image restoration. In addition, we propose a multi-head attention middle block (MHAMB) as a bridge between the encoder and decoder to capture more global information and surpass the limitations of the receptive field of CNNs. Extensive experiments demonstrate that our approach, named as M3SNet, outperforms previous state-of-the-art models while using less than half the computational costs, for several image restoration tasks, such as image deraining and deblurring.
Treatment planning for chronic diseases is a critical task in medical artificial intelligence, particularly in traditional Chinese medicine (TCM). However, generating optimized sequential treatment strategies for patients with chronic diseases in different clinical encounters remains a challenging issue that requires further exploration. In this study, we proposed a TCM herbal prescription planning framework based on deep reinforcement learning for chronic disease treatment (PrescDRL). PrescDRL is a sequential herbal prescription optimization model that focuses on long-term effectiveness rather than achieving maximum reward at every step, thereby ensuring better patient outcomes. We constructed a high-quality benchmark dataset for sequential diagnosis and treatment of diabetes and evaluated PrescDRL against this benchmark. Our results showed that PrescDRL achieved a higher curative effect, with the single-step reward improving by 117% and 153% compared to doctors. Furthermore, PrescDRL outperformed the benchmark in prescription prediction, with precision improving by 40.5% and recall improving by 63%. Overall, our study demonstrates the potential of using artificial intelligence to improve clinical intelligent diagnosis and treatment in TCM.
Melanoma is the most lethal type of skin cancer. Patients are vulnerable to mental health illnesses which can reduce the effectiveness of the cancer treatment and the patients adherence to drug plans. It is crucial to preserve the mental health of patients while they are receiving treatment. However, current art therapy approaches are not personal and unique to the patient. We aim to provide a well-trained image style transfer model that can quickly generate unique art from personal dermoscopic melanoma images as an additional tool for art therapy in disease management of melanoma. Visual art appreciation as a common form of art therapy in disease management that measurably reduces the degree of psychological distress. We developed a network based on the cycle-consistent generative adversarial network for style transfer that generates personalized and unique artworks from dermoscopic melanoma images. We developed a model that converts melanoma images into unique flower-themed artworks that relate to the shape of the lesion and are therefore personal to the patient. Further, we altered the initial framework and made comparisons and evaluations of the results. With this, we increased the options in the toolbox for art therapy in disease management of melanoma. The development of an easy-to-use user interface ensures the availability of the approach to stakeholders. The transformation of melanoma into flower-themed artworks is achieved by the proposed model and the graphical user interface. This contribution opens a new field of GANs in art therapy and could lead to more personalized disease management.
Spacecraft pose estimation plays a vital role in many on-orbit space missions, such as rendezvous and docking, debris removal, and on-orbit maintenance. At present, space images contain widely varying lighting conditions, high contrast and low resolution, pose estimation of space objects is more challenging than that of objects on earth. In this paper, we analyzing the radar image characteristics of spacecraft on-orbit, then propose a new deep learning neural Network structure named Dense Residual U-shaped Network (DR-U-Net) to extract image features. We further introduce a novel neural network based on DR-U-Net, namely Spacecraft U-shaped Network (SU-Net) to achieve end-to-end pose estimation for non-cooperative spacecraft. Specifically, the SU-Net first preprocess the image of non-cooperative spacecraft, then transfer learning was used for pre-training. Subsequently, in order to solve the problem of radar image blur and low ability of spacecraft contour recognition, we add residual connection and dense connection to the backbone network U-Net, and we named it DR-U-Net. In this way, the feature loss and the complexity of the model is reduced, and the degradation of deep neural network during training is avoided. Finally, a layer of feedforward neural network is used for pose estimation of non-cooperative spacecraft on-orbit. Experiments prove that the proposed method does not rely on the hand-made object specific features, and the model has robust robustness, and the calculation accuracy outperforms the state-of-the-art pose estimation methods. The absolute error is 0.1557 to 0.4491 , the mean error is about 0.302 , and the standard deviation is about 0.065 .
Uncontrolled spacecraft will disintegrate and generate a large amount of debris in the reentry process, and ablative debris may cause potential risks to the safety of human life and property on the ground. Therefore, predicting the landing points of spacecraft debris and forecasting the degree of risk of debris to human life and property is very important. In view that it is difficult to predict the process of reentry process and the reentry point in advance, and the debris generated from reentry disintegration may cause ground damage for the uncontrolled space vehicle on expiration of service. In this paper, we adopt the object-oriented approach to consider the spacecraft and its disintegrated components as consisting of simple basic geometric models, and introduce three machine learning models: the support vector regression (SVR), decision tree regression (DTR) and multilayer perceptron (MLP) to predict the velocity, longitude and latitude of spacecraft debris landing points for the first time. Then, we compare the prediction accuracy of the three models. Furthermore, we define the reentry risk and the degree of danger, and we calculate the risk level for each spacecraft debris and make warnings accordingly. The experimental results show that the proposed method can obtain high accuracy prediction results in at least 15 seconds and make safety level warning more real-time.
Optimization of human-AI teams hinges on the AI's ability to tailor its interaction to individual human teammates. A common hypothesis in adaptive AI research is that minor differences in people's predisposition to trust can significantly impact their likelihood of complying with recommendations from the AI. Predisposition to trust is often measured with self-report inventories that are administered before interactions. We benchmark a popular measure of this kind against behavioral predictors of compliance. We find that the inventory is a less effective predictor of compliance than the behavioral measures in datasets taken from three previous research projects. This suggests a general property that individual differences in initial behavior are more predictive than differences in self-reported trust attitudes. This result also shows a potential for easily accessible behavioral measures to provide an AI with more accurate models without the use of (often costly) survey instruments.