Abstract:Current multi-modal models exhibit a notable misalignment with the human visual system when identifying objects that are visually assimilated into the background. Our observations reveal that these multi-modal models cannot distinguish concealed objects, demonstrating an inability to emulate human cognitive processes which effectively utilize foreground-background similarity principles for visual analysis. To analyze this hidden human-model visual thinking discrepancy, we build a visual system that mimicks human visual camouflaged perception to progressively and iteratively `refocus' visual concealed content. The refocus is a progressive guidance mechanism enabling models to logically localize objects in visual images through stepwise reasoning. The localization process of concealed objects requires hierarchical attention shifting with dynamic adjustment and refinement of prior cognitive knowledge. In this paper, we propose a visual refocus reinforcement framework via the policy optimization algorithm to encourage multi-modal models to think and refocus more before answering, and achieve excellent reasoning abilities to align and even surpass human camouflaged perception systems. Our extensive experiments on camouflaged perception successfully demonstrate the emergence of refocus visual phenomena, characterized by multiple reasoning tokens and dynamic adjustment of the detection box. Besides, experimental results on both camouflaged object classification and detection tasks exhibit significantly superior performance compared to Supervised Fine-Tuning (SFT) baselines.
Abstract:We introduce a unique experimental testbed that consists of a fleet of 16 miniature Ackermann-steering vehicles. We are motivated by a lack of available low-cost platforms to support research and education in multi-car navigation and trajectory planning. This article elaborates the design of our miniature robotic car, the Cambridge Minicar, as well as the fleet's control architecture. Our experimental testbed allows us to implement state-of-the-art driver models as well as autonomous control strategies, and test their validity in a real, physical multi-lane setup. Through experiments on our miniature highway, we are able to tangibly demonstrate the benefits of cooperative driving on multi-lane road topographies. Our setup paves the way for indoor large-fleet experimental research.