Senior Member, IEEE
Abstract:Temporal Action Localization (TAL) has garnered significant attention in information retrieval. Existing supervised or weakly supervised methods heavily rely on labeled temporal boundaries and action categories, which are labor-intensive and time-consuming. Consequently, unsupervised temporal action localization (UTAL) has gained popularity. However, current methods face two main challenges: 1) Classification pre-trained features overly focus on highly discriminative regions; 2) Solely relying on visual modality information makes it difficult to determine contextual boundaries. To address these issues, we propose a CLIP-assisted cross-view audiovisual enhanced UTAL method. Specifically, we introduce visual language pre-training (VLP) and classification pre-training-based collaborative enhancement to avoid excessive focus on highly discriminative regions; we also incorporate audio perception to provide richer contextual boundary information. Finally, we introduce a self-supervised cross-view learning paradigm to achieve multi-view perceptual enhancement without additional annotations. Extensive experiments on two public datasets demonstrate our model's superiority over several state-of-the-art competitors.
Abstract:Image cropping is crucial for enhancing the visual appeal and narrative impact of photographs, yet existing rule-based and data-driven approaches often lack diversity or require annotated training data. We introduce ProCrop, a retrieval-based method that leverages professional photography to guide cropping decisions. By fusing features from professional photographs with those of the query image, ProCrop learns from professional compositions, significantly boosting performance. Additionally, we present a large-scale dataset of 242K weakly-annotated images, generated by out-painting professional images and iteratively refining diverse crop proposals. This composition-aware dataset generation offers diverse high-quality crop proposals guided by aesthetic principles and becomes the largest publicly available dataset for image cropping. Extensive experiments show that ProCrop significantly outperforms existing methods in both supervised and weakly-supervised settings. Notably, when trained on the new dataset, our ProCrop surpasses previous weakly-supervised methods and even matches fully supervised approaches. Both the code and dataset will be made publicly available to advance research in image aesthetics and composition analysis.
Abstract:Recent video diffusion models have demonstrated their great capability in generating visually-pleasing results, while synthesizing the correct physical effects in generated videos remains challenging. The complexity of real-world motions, interactions, and dynamics introduce great difficulties when learning physics from data. In this work, we propose DiffPhy, a generic framework that enables physically-correct and photo-realistic video generation by fine-tuning a pre-trained video diffusion model. Our method leverages large language models (LLMs) to explicitly reason a comprehensive physical context from the text prompt and use it to guide the generation. To incorporate physical context into the diffusion model, we leverage a Multimodal large language model (MLLM) as a supervisory signal and introduce a set of novel training objectives that jointly enforce physical correctness and semantic consistency with the input text. We also establish a high-quality physical video dataset containing diverse phyiscal actions and events to facilitate effective finetuning. Extensive experiments on public benchmarks demonstrate that DiffPhy is able to produce state-of-the-art results across diverse physics-related scenarios. Our project page is available at https://bwgzk-keke.github.io/DiffPhy/
Abstract:Parameter-Efficient Fine-Tuning (PEFT) has emerged as a critical paradigm for adapting Large Language Models (LLMs) to downstream tasks, among which Low-rank Adaptation (LoRA) represents one of the most widely adopted methodologies. However, existing LoRA-based approaches exhibit two fundamental limitations: unstable training dynamics and inefficient knowledge transfer from pre-trained models, both stemming from random initialization of adapter parameters. To overcome these challenges, we propose DuDe, a novel approach that decomposes weight matrices into magnitude and direction components, employing Singular Value Decomposition (SVD) for principled initialization. Our comprehensive evaluation demonstrates DuDe's superior performance and robustness, achieving up to 48.35\% accuracy on MMLU and 62.53\% ($\pm$ 1.59) accuracy on GSM8K. Our theoretical analysis and empirical validation collectively demonstrate that DuDe's decomposition strategy enhances optimization stability and better preserves pre-trained representations, particularly for domain-specific tasks requiring specialized knowledge. The combination of robust empirical performance and rigorous theoretical foundations establishes DuDe as a significant contribution to PEFT methodologies for LLMs.
Abstract:Fine-tuning Large Language Models (LLMs) has become increasingly challenging due to their massive scale and associated computational costs. Parameter-Efficient Fine-Tuning (PEFT) methodologies have been proposed as computational alternatives; however, their implementations still require significant resources. In this paper, we present OSoRA (Output-Dimension and Singular-Value Initialized Low-Rank Adaptation), a novel PEFT method for LLMs. OSoRA extends Low-Rank Adaptation (LoRA) by integrating Singular Value Decomposition (SVD) with learnable scaling vectors in a unified framework. It first performs an SVD of pre-trained weight matrices, then optimizes an output-dimension vector during training, while keeping the corresponding singular vector matrices frozen. OSoRA substantially reduces computational resource requirements by minimizing the number of trainable parameters during fine-tuning. Comprehensive evaluations across mathematical reasoning, common sense reasoning, and other benchmarks demonstrate that OSoRA achieves comparable or superior performance to state-of-the-art methods like LoRA and VeRA, while maintaining a linear parameter scaling even as the rank increases to higher dimensions. Our ablation studies further confirm that jointly training both the singular values and the output-dimension vector is critical for optimal performance.
Abstract:Tool learning, which enables large language models (LLMs) to utilize external tools effectively, has garnered increasing attention for its potential to revolutionize productivity across industries. Despite rapid development in tool learning, key challenges and opportunities remain understudied, limiting deeper insights and future advancements. In this paper, we investigate the tool learning ability of 41 prevalent LLMs by reproducing 33 benchmarks and enabling one-click evaluation for seven of them, forming a Tool Learning Platform named ToLeaP. We also collect 21 out of 33 potential training datasets to facilitate future exploration. After analyzing over 3,000 bad cases of 41 LLMs based on ToLeaP, we identify four main critical challenges: (1) benchmark limitations induce both the neglect and lack of (2) autonomous learning, (3) generalization, and (4) long-horizon task-solving capabilities of LLMs. To aid future advancements, we take a step further toward exploring potential directions, namely (1) real-world benchmark construction, (2) compatibility-aware autonomous learning, (3) rationale learning by thinking, and (4) identifying and recalling key clues. The preliminary experiments demonstrate their effectiveness, highlighting the need for further research and exploration.
Abstract:Accurate segmentation of tubular structures in medical images, such as vessels and airway trees, is crucial for computer-aided diagnosis, radiotherapy, and surgical planning. However, significant challenges exist in algorithm design when faced with diverse sizes, complex topologies, and (often) incomplete data annotation of these structures. We address these difficulties by proposing a new tubular structure segmentation framework named HarmonySeg. First, we design a deep-to-shallow decoder network featuring flexible convolution blocks with varying receptive fields, which enables the model to effectively adapt to tubular structures of different scales. Second, to highlight potential anatomical regions and improve the recall of small tubular structures, we incorporate vesselness maps as auxiliary information. These maps are aligned with image features through a shallow-and-deep fusion module, which simultaneously eliminates unreasonable candidates to maintain high precision. Finally, we introduce a topology-preserving loss function that leverages contextual and shape priors to balance the growth and suppression of tubular structures, which also allows the model to handle low-quality and incomplete annotations. Extensive quantitative experiments are conducted on four public datasets. The results show that our model can accurately segment 2D and 3D tubular structures and outperform existing state-of-the-art methods. External validation on a private dataset also demonstrates good generalizability.
Abstract:Billions of vascular access procedures are performed annually worldwide, serving as a crucial first step in various clinical diagnostic and therapeutic procedures. For pediatric or elderly individuals, whose vessels are small in size (typically 2 to 3 mm in diameter for adults and less than 1 mm in children), vascular access can be highly challenging. This study presents an image-guided robotic system aimed at enhancing the accuracy of difficult vascular access procedures. The system integrates a 6-DoF robotic arm with a 3-DoF end-effector, ensuring precise navigation and needle insertion. Multi-modal imaging and sensing technologies have been utilized to endow the medical robot with precision and safety, while ultrasound imaging guidance is specifically evaluated in this study. To evaluate in vivo vascular access in submillimeter vessels, we conducted ultrasound-guided robotic blood drawing on the tail veins (with a diameter of 0.7 plus or minus 0.2 mm) of 40 rats. The results demonstrate that the system achieved a first-attempt success rate of 95 percent. The high first-attempt success rate in intravenous vascular access, even with small blood vessels, demonstrates the system's effectiveness in performing these procedures. This capability reduces the risk of failed attempts, minimizes patient discomfort, and enhances clinical efficiency.
Abstract:Curating large-scale fully annotated datasets is expensive, laborious, and cumbersome, especially for medical images. Several methods have been proposed in the literature that make use of weak annotations in the form of scribbles. However, these approaches require large amounts of scribble annotations, and are only applied to the segmentation of regular organs, which are often unavailable for the disease species that fall in the long-tailed distribution. Motivated by the fact that the medical labels have anatomy distribution priors, we propose a scribble-supervised clustering-based framework, called MedCL, to learn the inherent anatomy distribution of medical labels. Our approach consists of two steps: i) Mix the features with intra- and inter-image mix operations, and ii) Perform feature clustering and regularize the anatomy distribution at both local and global levels. Combined with a small amount of weak supervision, the proposed MedCL is able to segment both regular organs and challenging irregular pathologies. We implement MedCL based on SAM and UNet backbones, and evaluate the performance on three open datasets of regular structure (MSCMRseg), multiple organs (BTCV) and irregular pathology (MyoPS). It is shown that even with less scribble supervision, MedCL substantially outperforms the conventional segmentation methods. Our code is available at https://github.com/BWGZK/MedCL.
Abstract:Predicting the future movements of surrounding vehicles is essential for ensuring the safe operation and efficient navigation of autonomous vehicles (AVs) in urban traffic environments. Existing vehicle trajectory prediction methods primarily focus on improving overall performance, yet they struggle to address long-tail scenarios effectively. This limitation often leads to poor predictions in rare cases, significantly increasing the risk of safety incidents. Taking Argoverse 2 motion forecasting dataset as an example, we first investigate the long-tail characteristics in trajectory samples from two perspectives, individual motion and group interaction, and deriving deviation features to distinguish abnormal from regular scenarios. On this basis, we propose CDKFormer, a Contextual Deviation Knowledge-based Transformer model for long-tail trajectory prediction. CDKFormer integrates an attention-based scene context fusion module to encode spatiotemporal interaction and road topology. An additional deviation feature fusion module is proposed to capture the dynamic deviations in the target vehicle status. We further introduce a dual query-based decoder, supported by a multi-stream decoder block, to sequentially decode heterogeneous scene deviation features and generate multimodal trajectory predictions. Extensive experiments demonstrate that CDKFormer achieves state-of-the-art performance, significantly enhancing prediction accuracy and robustness for long-tailed trajectories compared to existing methods, thus advancing the reliability of AVs in complex real-world environments.