Machine learning models often learn to make predictions that rely on sensitive social attributes like gender and race, which poses significant fairness risks, especially in societal applications, such as hiring, banking, and criminal justice. Existing work tackles this issue by minimizing the employed information about social attributes in models for debiasing. However, the high correlation between target task and these social attributes makes learning on the target task incompatible with debiasing. Given that model bias arises due to the learning of bias features (\emph{i.e}., gender) that help target task optimization, we explore the following research question: \emph{Can we leverage shortcut features to replace the role of bias feature in target task optimization for debiasing?} To this end, we propose \emph{Shortcut Debiasing}, to first transfer the target task's learning of bias attributes from bias features to shortcut features, and then employ causal intervention to eliminate shortcut features during inference. The key idea of \emph{Shortcut Debiasing} is to design controllable shortcut features to on one hand replace bias features in contributing to the target task during the training stage, and on the other hand be easily removed by intervention during the inference stage. This guarantees the learning of the target task does not hinder the elimination of bias features. We apply \emph{Shortcut Debiasing} to several benchmark datasets, and achieve significant improvements over the state-of-the-art debiasing methods in both accuracy and fairness.
Token interaction operation is one of the core modules in MLP-based models to exchange and aggregate information between different spatial locations. However, the power of token interaction on the spatial dimension is highly dependent on the spatial resolution of the feature maps, which limits the model's expressive ability, especially in deep layers where the feature are down-sampled to a small spatial size. To address this issue, we present a novel method called \textbf{Strip-MLP} to enrich the token interaction power in three ways. Firstly, we introduce a new MLP paradigm called Strip MLP layer that allows the token to interact with other tokens in a cross-strip manner, enabling the tokens in a row (or column) to contribute to the information aggregations in adjacent but different strips of rows (or columns). Secondly, a \textbf{C}ascade \textbf{G}roup \textbf{S}trip \textbf{M}ixing \textbf{M}odule (CGSMM) is proposed to overcome the performance degradation caused by small spatial feature size. The module allows tokens to interact more effectively in the manners of within-patch and cross-patch, which is independent to the feature spatial size. Finally, based on the Strip MLP layer, we propose a novel \textbf{L}ocal \textbf{S}trip \textbf{M}ixing \textbf{M}odule (LSMM) to boost the token interaction power in the local region. Extensive experiments demonstrate that Strip-MLP significantly improves the performance of MLP-based models on small datasets and obtains comparable or even better results on ImageNet. In particular, Strip-MLP models achieve higher average Top-1 accuracy than existing MLP-based models by +2.44\% on Caltech-101 and +2.16\% on CIFAR-100. The source codes will be available at~\href{https://github.com/Med-Process/Strip_MLP{https://github.com/Med-Process/Strip\_MLP}.
Electroencephalography (EEG) plays a vital role in detecting how brain responses to different stimulus. In this paper, we propose a novel Shallow-Deep Attention-based Network (SDANet) to classify the correct auditory stimulus evoking the EEG signal. It adopts the Attention-based Correlation Module (ACM) to discover the connection between auditory speech and EEG from global aspect, and the Shallow-Deep Similarity Classification Module (SDSCM) to decide the classification result via the embeddings learned from the shallow and deep layers. Moreover, various training strategies and data augmentation are used to boost the model robustness. Experiments are conducted on the dataset provided by Auditory EEG challenge (ICASSP Signal Processing Grand Challenge 2023). Results show that the proposed model has a significant gain over the baseline on the match-mismatch track.
Recognizing the feelings of human beings plays a critical role in our daily communication. Neuroscience has demonstrated that different emotion states present different degrees of activation in different brain regions, EEG frequency bands and temporal stamps. In this paper, we propose a novel structure to explore the informative EEG features for emotion recognition. The proposed module, denoted by PST-Attention, consists of Positional, Spectral and Temporal Attention modules to explore more discriminative EEG features. Specifically, the Positional Attention module is to capture the activate regions stimulated by different emotions in the spatial dimension. The Spectral and Temporal Attention modules assign the weights of different frequency bands and temporal slices respectively. Our method is adaptive as well as efficient which can be fit into 3D Convolutional Neural Networks (3D-CNN) as a plug-in module. We conduct experiments on two real-world datasets. 3D-CNN combined with our module achieves promising results and demonstrate that the PST-Attention is able to capture stable patterns for emotion recognition from EEG.
Contextual information plays an important role in action recognition. Local operations have difficulty to model the relation between two elements with a long-distance interval. However, directly modeling the contextual information between any two points brings huge cost in computation and memory, especially for action recognition, where there is an additional temporal dimension. Inspired from 2D criss-cross attention used in segmentation task, we propose a recurrent 3D criss-cross attention (RCCA-3D) module to model the dense long-range spatiotemporal contextual information in video for action recognition. The global context is factorized into sparse relation maps. We model the relationship between points in the same line along the direction of horizon, vertical and depth at each time, which forms a 3D criss-cross structure, and duplicate the same operation with recurrent mechanism to transmit the relation between points in a line to a plane finally to the whole spatiotemporal space. Compared with the non-local method, the proposed RCCA-3D module reduces the number of parameters and FLOPs by 25% and 30% for video context modeling. We evaluate the performance of RCCA-3D with two latest action recognition networks on three datasets and make a thorough analysis of the architecture, obtaining the optimal way to factorize and fuse the relation maps. Comparisons with other state-of-the-art methods demonstrate the effectiveness and efficiency of our model.
The omnipresence of deep learning architectures such as deep convolutional neural networks (CNN)s is fueled by the synergistic combination of ever-increasing labeled datasets and specialized hardware. Despite the indisputable success, the reliance on huge amounts of labeled data and specialized hardware can be a limiting factor when approaching new applications. To help alleviating these limitations, we propose an efficient learning strategy for layer-wise unsupervised training of deep CNNs on conventional hardware in acceptable time. Our proposed strategy consists of randomly convexifying the reconstruction contractive auto-encoding (RCAE) learning objective and solving the resulting large-scale convex minimization problem in the frequency domain via coordinate descent (CD). The main advantages of our proposed learning strategy are: (1) single tunable optimization parameter; (2) fast and guaranteed convergence; (3) possibilities for full parallelization. Numerical experiments show that our proposed learning strategy scales (in the worst case) linearly with image size, number of filters and filter size.