Abstract:In this report, we present the method that achieves third place for Ego4D EgoSchema Challenge in CVPR 2025. To improve the reliability of answer prediction in egocentric video question answering, we propose an effective extension to the previously proposed HCQA framework. Our approach introduces a multi-source aggregation strategy to generate diverse predictions, followed by a confidence-based filtering mechanism that selects high-confidence answers directly. For low-confidence cases, we incorporate a fine-grained reasoning module that performs additional visual and contextual analysis to refine the predictions. Evaluated on the EgoSchema blind test set, our method achieves 77% accuracy on over 5,000 human-curated multiple-choice questions, outperforming last year's winning solution and the majority of participating teams. Our code will be added at https://github.com/Hyu-Zhang/HCQA.
Abstract:AI personal assistants, deployed through robots or wearables, require embodied understanding to collaborate effectively with humans. Current Multimodal Large Language Models (MLLMs) primarily focus on third-person (exocentric) vision, overlooking the unique aspects of first-person (egocentric) videos. Additionally, high acquisition costs limit data size, impairing MLLM performance. To address these challenges, we propose learning the mapping between exocentric and egocentric domains, leveraging the extensive exocentric knowledge within existing MLLMs to enhance egocentric video understanding. To this end, we introduce Ego-ExoClip, a pre-training dataset comprising 1.1M synchronized ego-exo clip-text pairs derived from Ego-Exo4D. Our approach features a progressive training pipeline with three stages: Teacher Self-Preparation, Teacher-Student Guidance, and Student Self-Practice. Additionally, we propose an instruction-tuning data EgoIT from multiple sources to strengthen the model's instruction-following capabilities, along with the EgoBench benchmark comprising eight different tasks for thorough evaluation. Extensive experiments across diverse egocentric tasks reveal that existing MLLMs perform inadequately in egocentric video understanding, while our model significantly outperforms these leading models.