Abstract:Direct Preference Optimization (DPO) has emerged as an effective approach for mitigating hallucination in Multimodal Large Language Models (MLLMs). Although existing methods have achieved significant progress by utilizing vision-oriented contrastive objectives for enhancing MLLMs' attention to visual inputs and hence reducing hallucination, they suffer from non-rigorous optimization objective function and indirect preference supervision. To address these limitations, we propose a Symmetric Multimodal Preference Optimization (SymMPO), which conducts symmetric preference learning with direct preference supervision (i.e., response pairs) for visual understanding enhancement, while maintaining rigorous theoretical alignment with standard DPO. In addition to conventional ordinal preference learning, SymMPO introduces a preference margin consistency loss to quantitatively regulate the preference gap between symmetric preference pairs. Comprehensive evaluation across five benchmarks demonstrate SymMPO's superior performance, validating its effectiveness in hallucination mitigation of MLLMs.
Abstract:Deep neural networks have made remarkable progresses on various computer vision tasks. Recent works have shown that depth, width and shortcut connections of networks are all vital to their performances. In this paper, we introduce a method to sparsify DenseNet which can reduce connections of a L-layer DenseNet from O(L^2) to O(L), and thus we can simultaneously increase depth, width and connections of neural networks in a more parameter-efficient and computation-efficient way. Moreover, an attention module is introduced to further boost our network's performance. We denote our network as SparseNet. We evaluate SparseNet on datasets of CIFAR(including CIFAR10 and CIFAR100) and SVHN. Experiments show that SparseNet can obtain improvements over the state-of-the-art on CIFAR10 and SVHN. Furthermore, while achieving comparable performances as DenseNet on these datasets, SparseNet is x2.6 smaller and x3.7 faster than the original DenseNet.