Alex
Abstract:For architectural design, representation across multiple Levels of Details (LoD) is essential for achieving a smooth transition from conceptual massing to detailed modeling. However, traditional LoD modeling processes rely on manual operations that are time-consuming, labor-intensive, and prone to geometric inconsistencies. While the rapid advancement of generative artificial intelligence (AI) has opened new possibilities for generating multi-level architectural models from sketch inputs, its application remains limited by the lack of high-quality paired LoD training data. To address this issue, we propose an automatic LoD sketch extraction framework using generative AI models, which progressively simplifies high-detail architectural models to automatically generate geometrically consistent and hierarchically coherent multi-LoD representations. The proposed framework integrates computer vision techniques with generative AI methods to establish a progressive extraction pipeline that transitions from detailed representations to volumetric abstractions. Experimental results demonstrate that the method maintains strong geometric consistency across LoD levels, achieving SSIM values of 0.7319 and 0.7532 for the transitions from LoD3 to LoD2 and from LoD2 to LoD1, respectively, with corresponding normalized Hausdorff distances of 25.1% and 61.0% of the image diagonal, reflecting controlled geometric deviation during abstraction. These results verify that the proposed framework effectively preserves global structure while achieving progressive semantic simplification across different LoD levels, providing reliable data and technical support for AI-driven multi-level architectural generation and hierarchical modeling.
Abstract:Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
Abstract:Facade renovation offers a more sustainable alternative to full demolition, yet producing design proposals that preserve existing structures while expressing new intent remains challenging. Current workflows typically require detailed as-built modelling before design, which is time-consuming, labour-intensive, and often involves repeated revisions. To solve this issue, we propose a three-stage framework combining generative artificial intelligence (AI) and vision-language models (VLM) that directly processes rough structural sketch and textual descriptions to produce consistent renovation proposals. First, the input sketch is used by a fine-tuned VLM model to predict bounding boxes specifying where modifications are needed and which components should be added. Next, a stable diffusion model generates detailed sketches of new elements, which are merged with the original outline through a generative inpainting pipeline. Finally, ControlNet is employed to refine the result into a photorealistic image. Experiments on datasets and real industrial buildings indicate that the proposed framework can generate renovation proposals that preserve the original structure while improving facade detail quality. This approach effectively bypasses the need for detailed as-built modelling, enabling architects to rapidly explore design alternatives, iterate on early-stage concepts, and communicate renovation intentions with greater clarity.
Abstract:Automated pathology image analysis is central to clinical diagnosis, but clinicians still ask which slide features drive a model's decision and why. Vision-language models can produce natural language explanations, but these are often correlational and lack verifiable evidence. In this paper, we introduce an SQL-centered agentic framework that enables both feature measurement and reasoning to be auditable. Specifically, after extracting human-interpretable cellular features, Feature Reasoning Agents compose and execute SQL queries over feature tables to aggregate visual evidence into quantitative findings. A Knowledge Comparison Agent then evaluates these findings against established pathological knowledge, mirroring how pathologists justify diagnoses from measurable observations. Extensive experiments evaluated on two pathology visual question answering datasets demonstrate our method improves interpretability and decision traceability while producing executable SQL traces that link cellular measurements to diagnostic conclusions.
Abstract:Recent Video Large Language Models (Video-LLMs) have shown strong multimodal reasoning capabilities, yet remain challenged by video understanding tasks that require consistent temporal ordering and causal coherence. Many parameter-efficient Video-LLMs rely on unconstrained bidirectional projectors to model inter-frame interactions, which can blur temporal ordering by allowing later frames to influence earlier representations, without explicit architectural mechanisms to respect the directional nature of video reasoning. To address this limitation, we propose V-CORE, a parameter-efficient framework that introduces explicit temporal ordering constraints for video understanding. V-CORE consists of two key components: (1) Learnable Spatial Aggregation (LSA), which adaptively selects salient spatial tokens to reduce redundancy, and (2) a Causality-Aware Temporal Projector (CATP), which enforces structured unidirectional information flow via block-causal attention and a terminal dynamic summary token acting as a causal sink. This design preserves intra-frame spatial interactions while ensuring that temporal information is aggregated in a strictly ordered manner. With 4-bit QLoRA and a frozen LLM backbone, V-CORE can be trained efficiently on a single consumer GPU. Experiments show that V-CORE achieves strong performance on the challenging NExT-QA benchmark, reaching 61.2% accuracy, and remains competitive across MSVD-QA, MSRVTT-QA, and TGIF-QA, with gains concentrated in temporal and causal reasoning subcategories (+3.5% and +5.2% respectively), directly validating the importance of explicit temporal ordering constraints.
Abstract:Detection Transformer (DETR) offers an end-to-end solution for object detection by eliminating hand-crafted components like non-maximum suppression. However, DETR suffers from inefficient query competition where multiple queries converge to similar positions, leading to redundant computations. We present Route-DETR, which addresses these issues through adaptive pairwise routing in decoder self-attention layers. Our key insight is distinguishing between competing queries (targeting the same object) versus complementary queries (targeting different objects) using inter-query similarity, confidence scores, and geometry. We introduce dual routing mechanisms: suppressor routes that modulate attention between competing queries to reduce duplication, and delegator routes that encourage exploration of different regions. These are implemented via learnable low-rank attention biases enabling asymmetric query interactions. A dual-branch training strategy incorporates routing biases only during training while preserving standard attention for inference, ensuring no additional computational cost. Experiments on COCO and Cityscapes demonstrate consistent improvements across multiple DETR baselines, achieving +1.7% mAP gain over DINO on ResNet-50 and reaching 57.6% mAP on Swin-L, surpassing prior state-of-the-art models.
Abstract:Recent advances in robotics have enabled the widespread deployment of autonomous robotic systems in complex operational environments, presenting both unprecedented opportunities and significant security problems. Traditional shepherding approaches based on fixed formations are often ineffective or risky in urban and obstacle-rich scenarios, especially when facing adversarial agents with unknown and adaptive behaviors. This paper addresses this challenge as an extended herding problem, where defensive robotic systems must safely guide adversarial agents with unknown strategies away from protected areas and into predetermined safe regions, while maintaining collision-free navigation in dynamic environments. We propose a hierarchical hybrid framework based on reach-avoid game theory and local motion planning, incorporating a virtual containment boundary and event-triggered pursuit mechanisms to enable scalable and robust multi-agent coordination. Simulation results demonstrate that the proposed approach achieves safe and efficient guidance of adversarial agents to designated regions.
Abstract:In deployment and application, large language models (LLMs) typically undergo safety alignment to prevent illegal and unethical outputs. However, the continuous advancement of jailbreak attack techniques, designed to bypass safety mechanisms with adversarial prompts, has placed increasing pressure on the security defenses of LLMs. Strengthening resistance to jailbreak attacks requires an in-depth understanding of the security mechanisms and vulnerabilities of LLMs. However, the vast number of parameters and complex structure of LLMs make analyzing security weaknesses from an internal perspective a challenging task. This paper presents NeuroBreak, a top-down jailbreak analysis system designed to analyze neuron-level safety mechanisms and mitigate vulnerabilities. We carefully design system requirements through collaboration with three experts in the field of AI security. The system provides a comprehensive analysis of various jailbreak attack methods. By incorporating layer-wise representation probing analysis, NeuroBreak offers a novel perspective on the model's decision-making process throughout its generation steps. Furthermore, the system supports the analysis of critical neurons from both semantic and functional perspectives, facilitating a deeper exploration of security mechanisms. We conduct quantitative evaluations and case studies to verify the effectiveness of our system, offering mechanistic insights for developing next-generation defense strategies against evolving jailbreak attacks.




Abstract:Feature transformation plays a critical role in enhancing machine learning model performance by optimizing data representations. Recent state-of-the-art approaches address this task as a continuous embedding optimization problem, converting discrete search into a learnable process. Although effective, these methods often rely on sequential encoder-decoder structures that cause high computational costs and parameter requirements, limiting scalability and efficiency. To address these limitations, we propose a novel framework that accomplishes automated feature transformation through four steps: transformation records collection, embedding space construction with a revised Generative Pre-trained Transformer (GPT) model, gradient-ascent search, and autoregressive reconstruction. In our approach, the revised GPT model serves two primary functions: (a) feature transformation sequence reconstruction and (b) model performance estimation and enhancement for downstream tasks by constructing the embedding space. Such a multi-objective optimization framework reduces parameter size and accelerates transformation processes. Experimental results on benchmark datasets show that the proposed framework matches or exceeds baseline performance, with significant gains in computational efficiency. This work highlights the potential of transformer-based architectures for scalable, high-performance automated feature transformation.
Abstract:Deep learning based automated pathological diagnosis has markedly improved diagnostic efficiency and reduced variability between observers, yet its clinical adoption remains limited by opaque model decisions and a lack of traceable rationale. To address this, recent multimodal visual reasoning architectures provide a unified framework that generates segmentation masks at the pixel level alongside semantically aligned textual explanations. By localizing lesion regions and producing expert style diagnostic narratives, these models deliver the transparent and interpretable insights necessary for dependable AI assisted pathology. Building on these advancements, we propose PathMR, a cell-level Multimodal visual Reasoning framework for Pathological image analysis. Given a pathological image and a textual query, PathMR generates expert-level diagnostic explanations while simultaneously predicting cell distribution patterns. To benchmark its performance, we evaluated our approach on the publicly available PathGen dataset as well as on our newly developed GADVR dataset. Extensive experiments on these two datasets demonstrate that PathMR consistently outperforms state-of-the-art visual reasoning methods in text generation quality, segmentation accuracy, and cross-modal alignment. These results highlight the potential of PathMR for improving interpretability in AI-driven pathological diagnosis. The code will be publicly available in https://github.com/zhangye-zoe/PathMR.