Abstract:We present Heartcare Suite, a multimodal comprehensive framework for finegrained electrocardiogram (ECG) understanding. It comprises three key components: (i) Heartcare-220K, a high-quality, structured, and comprehensive multimodal ECG dataset covering essential tasks such as disease diagnosis, waveform morphology analysis, and rhythm interpretation. (ii) Heartcare-Bench, a systematic and multi-dimensional benchmark designed to evaluate diagnostic intelligence and guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios. and (iii) HeartcareGPT with a tailored tokenizer Bidirectional ECG Abstract Tokenization (Beat), which compresses raw multi-lead signals into semantically rich discrete tokens via duallevel vector quantization and query-guided bidirectional diffusion mechanism. Built upon Heartcare-220K, HeartcareGPT achieves strong generalization and SoTA performance across multiple clinically meaningful tasks. Extensive experiments demonstrate that Heartcare Suite is highly effective in advancing ECGspecific multimodal understanding and evaluation. Our project is available at https://github.com/Wznnnnn/Heartcare-Suite .
Abstract:Calibration is crucial for ensuring the performance of phased array since amplitude-phase imbalance between elements results in significant performance degradation. While amplitude-only calibration methods offer advantages when phase measurements are impractical, conventional approaches face two key challenges: they typically require high-resolution phase shifters and remain susceptible to phase errors inherent in these components. To overcome these limitations, we propose a Rotating element Harmonic Electric-field Vector (RHEV) strategy, which enables precise calibration through time modulation principles. The proposed technique functions as follows. Two 1-bit phase shifters are periodically phase-switched at the same frequency, each generating corresponding harmonics. By adjusting the relative delay between their modulation timings, the phase difference between the $+1$st harmonics produced by the two elements can be precisely controlled, utilizing the time-shift property of the Fourier transform. Furthermore, the +1st harmonic generated by sequential modulation of individual elements exhibits a linear relationship with the amplitude of the modulated element, enabling amplitude ambiguity resolution. The proposed RHEV-based calibration method generates phase shifts through relative timing delays rather than physical phase shifter adjustments, rendering it less susceptible to phase shift errors. Additionally, since the calibration process exclusively utilizes the $+1$st harmonic, which is produced solely by the modulated unit, the method demonstrates consistent performance regardless of array size. Extensive numerical simulations, practical in-channel and over-the-air (OTA) calibration experiments demonstrate the effectiveness and distinct advantages of the proposed method.