the Institute of Intelligent Machines, Chinese Academy of Sciences
Abstract:Subject-driven image generation aims to synthesize novel scenes that faithfully preserve subject identity from reference images while adhering to textual guidance, yet existing methods struggle with a critical trade-off between fidelity and efficiency. Tuning-based approaches rely on time-consuming and resource-intensive subject-specific optimization, while zero-shot methods fail to maintain adequate subject consistency. In this work, we propose FreeGraftor, a training-free framework that addresses these limitations through cross-image feature grafting. Specifically, FreeGraftor employs semantic matching and position-constrained attention fusion to transfer visual details from reference subjects to the generated image. Additionally, our framework incorporates a novel noise initialization strategy to preserve geometry priors of reference subjects for robust feature matching. Extensive qualitative and quantitative experiments demonstrate that our method enables precise subject identity transfer while maintaining text-aligned scene synthesis. Without requiring model fine-tuning or additional training, FreeGraftor significantly outperforms existing zero-shot and training-free approaches in both subject fidelity and text alignment. Furthermore, our framework can seamlessly extend to multi-subject generation, making it practical for real-world deployment. Our code is available at https://github.com/Nihukat/FreeGraftor.
Abstract:Flexible electronic skins that simultaneously sense touch and bend are desired in several application areas, such as to cover articulated robot structures. This paper introduces a flexible tactile sensor based on Electrical Impedance Tomography (EIT), capable of simultaneously detecting and measuring contact forces and flexion of the sensor. The sensor integrates a magnetic hydrogel composite and utilizes EIT to reconstruct internal conductivity distributions. Real-time estimation is achieved through the one-step Gauss-Newton method, which dynamically updates reference voltages to accommodate sensor deformation. A convolutional neural network is employed to classify interactions, distinguishing between touch, bending, and idle states using pre-reconstructed images. Experimental results demonstrate an average touch localization error of 5.4 mm (SD 2.2 mm) and average bending angle estimation errors of 1.9$^\circ$ (SD 1.6$^\circ$). The proposed adaptive reference method effectively distinguishes between single- and multi-touch scenarios while compensating for deformation effects. This makes the sensor a promising solution for multimodal sensing in robotics and human-robot collaboration.
Abstract:Large language models (LLMs) based agent systems have made great strides in real-world applications beyond traditional NLP tasks. This paper proposes a new LLM-powered Multi-Agent System (LLM-MAS) benchmark, Collab-Overcooked, built on the popular Overcooked-AI game with more applicable and challenging tasks in interactive environments. Collab-Overcooked extends existing benchmarks from two novel perspectives. First, it provides a multi-agent framework supporting diverse tasks and objectives and encourages collaboration through natural language communication. Second, it introduces a spectrum of process-oriented evaluation metrics to assess the fine-grained collaboration capabilities of different LLM agents, a dimension often overlooked in prior work. We conduct extensive experiments over 10 popular LLMs and show that, while the LLMs present a strong ability in goal interpretation, there is a significant discrepancy in active collaboration and continuous adaption that are critical for efficiently fulfilling complicated tasks. Notably, we highlight the strengths and weaknesses in LLM-MAS and provide insights for improving and evaluating LLM-MAS on a unified and open-sourced benchmark. Environments, 30 open-ended tasks, and an integrated evaluation package are now publicly available at https://github.com/YusaeMeow/Collab-Overcooked.
Abstract:The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the training dynamics inside a model remain to be explored. In this work, we develop an interpretable method for fine-tuning and reveal the mechanism behind learning. We first propose the concept of node redundancy as an extension of intrinsic dimension and explain the idea behind circuit discovery from a fresh view. Based on the theory, we propose circuit-tuning, a two-stage algorithm that iteratively performs circuit discovery to mask out irrelevant edges and updates the remaining parameters responsible for a specific task. Experiments show that our method not only improves performance on a wide range of tasks but is also scalable while preserving general capabilities. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.
Abstract:Large language models (LLMs) exhibit remarkable capabilities in natural language processing but face catastrophic forgetting when learning new tasks, where adaptation to a new domain leads to a substantial decline in performance on previous tasks. In this paper, we propose Controlled LoRA (CLoRA), a subspace regularization method on LoRA structure. Aiming to reduce the scale of output change while introduce minimal constraint on model capacity, CLoRA imposes constraint on the direction of updating matrix null space. Experimental results on commonly used LLM finetuning tasks reveal that CLoRA significantly outperforms existing LoRA subsequent methods on both in-domain and outdomain evaluations, highlighting the superority of CLoRA as a effective parameter-efficient finetuning method with catastrophic forgetting mitigating. Further investigation for model parameters indicates that CLoRA effectively balances the trade-off between model capacity and degree of forgetting.
Abstract:The customization of text-to-image models has seen significant advancements, yet generating multiple personalized concepts remains a challenging task. Current methods struggle with attribute leakage and layout confusion when handling multiple concepts, leading to reduced concept fidelity and semantic consistency. In this work, we introduce a novel training-free framework, Concept Conductor, designed to ensure visual fidelity and correct layout in multi-concept customization. Concept Conductor isolates the sampling processes of multiple custom models to prevent attribute leakage between different concepts and corrects erroneous layouts through self-attention-based spatial guidance. Additionally, we present a concept injection technique that employs shape-aware masks to specify the generation area for each concept. This technique injects the structure and appearance of personalized concepts through feature fusion in the attention layers, ensuring harmony in the final image. Extensive qualitative and quantitative experiments demonstrate that Concept Conductor can consistently generate composite images with accurate layouts while preserving the visual details of each concept. Compared to existing baselines, Concept Conductor shows significant performance improvements. Our method supports the combination of any number of concepts and maintains high fidelity even when dealing with visually similar concepts. The code and models are available at https://github.com/Nihukat/Concept-Conductor.
Abstract:Physics-Informed Neural Networks (PINNs) are a machine learning technique for solving partial differential equations (PDEs) by incorporating PDEs as loss terms in neural networks and minimizing the loss function during training. Tomographic imaging, a method to reconstruct internal properties from external measurement data, is highly complex and ill-posed, making it an inverse problem. Recently, PINNs have shown significant potential in computational fluid dynamics (CFD) and have advantages in solving inverse problems. However, existing research has primarily focused on semi-inverse Electrical Impedance Tomography (EIT), where internal electric potentials are accessible. The practical full inverse EIT problem, where only boundary voltage measurements are available, remains challenging. To address this, we propose a two-stage hybrid learning framework combining Convolutional Neural Networks (CNNs) and PINNs to solve the full inverse EIT problem. This framework integrates data-driven and model-driven approaches, combines supervised and unsupervised learning, and decouples the forward and inverse problems within the PINN framework in EIT. Stage I: a U-Net constructs an end-to-end mapping from boundary voltage measurements to the internal potential distribution using supervised learning. Stage II: a Multilayer Perceptron (MLP)-based PINN takes the predicted internal potentials as input to solve for the conductivity distribution through unsupervised learning.
Abstract:Instruction Fine-Tuning, a method enhancing pre-trained language models' capabilities from mere next-word prediction to complex instruction following, often employs a one-off training approach on diverse instruction dataset. However, this method may not effectively enhance models' adherence to instructions due to the simultaneous handling of varying instruction complexities. To address this, we propose a novel phased instruction fine-tuning (Phased IFT) method, grounded in the hypothesis of progressive alignment, which posits that the transition of a pre-trained language model from simple next-word prediction to sophisticated instruction following is a gradual learning process. Specifically, we obtain the score of difficulty for each instruction via GPT-4, stratify the instruction data into subsets of increasing difficulty, and sequentially uptrain on these subsets using the standard supervised loss. Through extensive experiments on the pre-trained models Llama-2 7B/13B, and Mistral-7B using the 52K Alpaca instruction data, we demonstrate that Phased IFT significantly surpasses traditional one-off instruction fine-tuning (One-off IFT) method in win rate, empirically validating the progressive alignment hypothesis. Our findings suggest that Phased IFT offers a simple yet effective pathway for elevating the instruction-following capabilities of pre-trained language models. Models and datasets from our experiments are freely available at https://github.com/xubuvd/PhasedSFT.
Abstract:Image harmonization, which involves adjusting the foreground of a composite image to attain a unified visual consistency with the background, can be conceptualized as an image-to-image translation task. Diffusion models have recently promoted the rapid development of image-to-image translation tasks . However, training diffusion models from scratch is computationally intensive. Fine-tuning pre-trained latent diffusion models entails dealing with the reconstruction error induced by the image compression autoencoder, making it unsuitable for image generation tasks that involve pixel-level evaluation metrics. To deal with these issues, in this paper, we first adapt a pre-trained latent diffusion model to the image harmonization task to generate the harmonious but potentially blurry initial images. Then we implement two strategies: utilizing higher-resolution images during inference and incorporating an additional refinement stage, to further enhance the clarity of the initially harmonized images. Extensive experiments on iHarmony4 datasets demonstrate the superiority of our proposed method. The code and model will be made publicly available at https://github.com/nicecv/DiffHarmony .
Abstract:Existing pre-trained vision-language models, e.g., CLIP, have demonstrated impressive zero-shot generalization capabilities in various downstream tasks. However, the performance of these models will degrade significantly when test inputs present different distributions. To this end, we explore the concept of test-time prompt tuning (TTPT), which enables the adaptation of the CLIP model to novel downstream tasks through only one step of optimization on an unsupervised objective that involves the test sample. Motivated by in-context learning within field of natural language processing (NLP), we propose In-Context Prompt Learning (InCPL) for test-time visual recognition task. InCPL involves associating a new test sample with very few or even just one labeled example as its in-context prompt. As a result, it can reliably estimate a label for the test sample, thereby facilitating the model adaptation process. InCPL first employs a token net to represent language descriptions as visual prompts that the vision encoder of a CLIP model can comprehend. Paired with in-context examples, we further propose a context-aware unsupervised loss to optimize test sample-aware visual prompts. This optimization allows a pre-trained, frozen CLIP model to be adapted to a test sample from any task using its learned adaptive prompt. Our method has demonstrated superior performance and achieved state-of-the-art results across various downstream datasets.