State-of-the-art sequential recommendation relies heavily on self-attention-based recommender models. Yet such models are computationally expensive and often too slow for real-time recommendation. Furthermore, the self-attention operation is performed at a sequence-level, thereby making low-cost incremental inference challenging. Inspired by recent advances in efficient language modeling, we propose linear recurrent units for sequential recommendation (LRURec). Similar to recurrent neural networks, LRURec offers rapid inference and can achieve incremental inference on sequential inputs. By decomposing the linear recurrence operation and designing recursive parallelization in our framework, LRURec provides the additional benefits of reduced model size and parallelizable training. Moreover, we optimize the architecture of LRURec by implementing a series of modifications to address the lack of non-linearity and improve training dynamics. To validate the effectiveness of our proposed LRURec, we conduct extensive experiments on multiple real-world datasets and compare its performance against state-of-the-art sequential recommenders. Experimental results demonstrate the effectiveness of LRURec, which consistently outperforms baselines by a significant margin. Results also highlight the efficiency of LRURec with our parallelized training paradigm and fast inference on long sequences, showing its potential to further enhance user experience in sequential recommendation.
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input without considering the invariant nature of the source image. As a result, extracting features from the source image is repeated in each interaction, resulting in substantial computational redundancy. In this work, we propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies and then recycles components for each user interaction. Thus, the efficiency of the whole interactive process can be significantly improved. To be specific, we apply the Decoupling-Recycling strategy from three perspectives to address three types of discrepancies, respectively. First, our model decouples the learning of source image semantics from the encoding of user guidance to process two types of input domains separately. Second, FDRN decouples high-level and low-level features from stratified semantic representations to enhance feature learning. Third, during the encoding of user guidance, current user guidance is decoupled from historical guidance to highlight the effect of current user guidance. We conduct extensive experiments on 6 datasets from different domains and modalities, which demonstrate the following merits of our model: 1) superior efficiency than other methods, particularly advantageous in challenging scenarios requiring long-term interactions (up to 4.25x faster), while achieving favorable segmentation performance; 2) strong applicability to various methods serving as a universal enhancement technique; 3) well cross-task generalizability, e.g., to medical image segmentation, and robustness against misleading user guidance.
With emerging online topics as a source for numerous new events, detecting unseen / rare event types presents an elusive challenge for existing event detection methods, where only limited data access is provided for training. To address the data scarcity problem in event detection, we propose MetaEvent, a meta learning-based framework for zero- and few-shot event detection. Specifically, we sample training tasks from existing event types and perform meta training to search for optimal parameters that quickly adapt to unseen tasks. In our framework, we propose to use the cloze-based prompt and a trigger-aware soft verbalizer to efficiently project output to unseen event types. Moreover, we design a contrastive meta objective based on maximum mean discrepancy (MMD) to learn class-separating features. As such, the proposed MetaEvent can perform zero-shot event detection by mapping features to event types without any prior knowledge. In our experiments, we demonstrate the effectiveness of MetaEvent in both zero-shot and few-shot scenarios, where the proposed method achieves state-of-the-art performance in extensive experiments on benchmark datasets FewEvent and MAVEN.
With emerging topics (e.g., COVID-19) on social media as a source for the spreading misinformation, overcoming the distributional shifts between the original training domain (i.e., source domain) and such target domains remains a non-trivial task for misinformation detection. This presents an elusive challenge for early-stage misinformation detection, where a good amount of data and annotations from the target domain is not available for training. To address the data scarcity issue, we propose MetaAdapt, a meta learning based approach for domain adaptive few-shot misinformation detection. MetaAdapt leverages limited target examples to provide feedback and guide the knowledge transfer from the source to the target domain (i.e., learn to adapt). In particular, we train the initial model with multiple source tasks and compute their similarity scores to the meta task. Based on the similarity scores, we rescale the meta gradients to adaptively learn from the source tasks. As such, MetaAdapt can learn how to adapt the misinformation detection model and exploit the source data for improved performance in the target domain. To demonstrate the efficiency and effectiveness of our method, we perform extensive experiments to compare MetaAdapt with state-of-the-art baselines and large language models (LLMs) such as LLaMA, where MetaAdapt achieves better performance in domain adaptive few-shot misinformation detection with substantially reduced parameters on real-world datasets.
Portrait retouching aims to improve the aesthetic quality of input portrait photos and especially requires human-region priority. The deep learning-based methods largely elevate the retouching efficiency and provide promising retouched results. However, existing portrait retouching methods focus on automatic retouching, which treats all human-regions equally and ignores users' preferences for specific individuals, thus suffering from limited flexibility in interactive scenarios. In this work, we emphasize the importance of users' intents and explore the interactive portrait retouching task. Specifically, we propose a region-aware retouching framework with two branches: an automatic branch and an interactive branch. The automatic branch involves an encoding-decoding process, which searches region candidates and performs automatic region-aware retouching without user guidance. The interactive branch encodes sparse user guidance into a priority condition vector and modulates latent features with a region selection module to further emphasize the user-specified regions. Experimental results show that our interactive branch effectively captures users' intents and generalizes well to unseen scenes with sparse user guidance, while our automatic branch also outperforms the state-of-the-art retouching methods due to improved region-awareness.
Question answering (QA) has recently shown impressive results for answering questions from customized domains. Yet, a common challenge is to adapt QA models to an unseen target domain. In this paper, we propose a novel self-supervised framework called QADA for QA domain adaptation. QADA introduces a novel data augmentation pipeline used to augment training QA samples. Different from existing methods, we enrich the samples via hidden space augmentation. For questions, we introduce multi-hop synonyms and sample augmented token embeddings with Dirichlet distributions. For contexts, we develop an augmentation method which learns to drop context spans via a custom attentive sampling strategy. Additionally, contrastive learning is integrated in the proposed self-supervised adaptation framework QADA. Unlike existing approaches, we generate pseudo labels and propose to train the model via a novel attention-based contrastive adaptation method. The attention weights are used to build informative features for discrepancy estimation that helps the QA model separate answers and generalize across source and target domains. To the best of our knowledge, our work is the first to leverage hidden space augmentation and attention-based contrastive adaptation for self-supervised domain adaptation in QA. Our evaluation shows that QADA achieves considerable improvements on multiple target datasets over state-of-the-art baselines in QA domain adaptation.
In many applications with real-world consequences, it is crucial to develop reliable uncertainty estimation for the predictions made by the AI decision systems. Targeting at the goal of estimating uncertainty, various deep neural network (DNN) based uncertainty estimation algorithms have been proposed. However, the robustness of the uncertainty returned by these algorithms has not been systematically explored. In this work, to raise the awareness of the research community on robust uncertainty estimation, we show that state-of-the-art uncertainty estimation algorithms could fail catastrophically under our proposed adversarial attack despite their impressive performance on uncertainty estimation. In particular, we aim at attacking the out-domain uncertainty estimation: under our attack, the uncertainty model would be fooled to make high-confident predictions for the out-domain data, which they originally would have rejected. Extensive experimental results on various benchmark image datasets show that the uncertainty estimated by state-of-the-art methods could be easily corrupted by our attack.
In the real-world application of COVID-19 misinformation detection, a fundamental challenge is the lack of the labeled COVID data to enable supervised end-to-end training of the models, especially at the early stage of the pandemic. To address this challenge, we propose an unsupervised domain adaptation framework using contrastive learning and adversarial domain mixup to transfer the knowledge from an existing source data domain to the target COVID-19 data domain. In particular, to bridge the gap between the source domain and the target domain, our method reduces a radial basis function (RBF) based discrepancy between these two domains. Moreover, we leverage the power of domain adversarial examples to establish an intermediate domain mixup, where the latent representations of the input text from both domains could be mixed during the training process. Extensive experiments on multiple real-world datasets suggest that our method can effectively adapt misinformation detection systems to the unseen COVID-19 target domain with significant improvements compared to the state-of-the-art baselines.