Abstract:Neuro-Symbolic AI (NSAI) is an emerging paradigm that integrates neural networks with symbolic reasoning to enhance the transparency, reasoning capabilities, and data efficiency of AI systems. Recent NSAI systems have gained traction due to their exceptional performance in reasoning tasks and human-AI collaborative scenarios. Despite these algorithmic advancements, executing NSAI tasks on existing hardware (e.g., CPUs, GPUs, TPUs) remains challenging, due to their heterogeneous computing kernels, high memory intensity, and unique memory access patterns. Moreover, current NSAI algorithms exhibit significant variation in operation types and scales, making them incompatible with existing ML accelerators. These challenges highlight the need for a versatile and flexible acceleration framework tailored to NSAI workloads. In this paper, we propose NSFlow, an FPGA-based acceleration framework designed to achieve high efficiency, scalability, and versatility across NSAI systems. NSFlow features a design architecture generator that identifies workload data dependencies and creates optimized dataflow architectures, as well as a reconfigurable array with flexible compute units, re-organizable memory, and mixed-precision capabilities. Evaluating across NSAI workloads, NSFlow achieves 31x speedup over Jetson TX2, more than 2x over GPU, 8x speedup over TPU-like systolic array, and more than 3x over Xilinx DPU. NSFlow also demonstrates enhanced scalability, with only 4x runtime increase when symbolic workloads scale by 150x. To the best of our knowledge, NSFlow is the first framework to enable real-time generalizable NSAI algorithms acceleration, demonstrating a promising solution for next-generation cognitive systems.
Abstract:Temporal causal discovery is a crucial task aimed at uncovering the causal relations within time series data. The latest temporal causal discovery methods usually train deep learning models on prediction tasks to uncover the causality between time series. They capture causal relations by analyzing the parameters of some components of the trained models, e.g., attention weights and convolution weights. However, this is an incomplete mapping process from the model parameters to the causality and fails to investigate the other components, e.g., fully connected layers and activation functions, that are also significant for causal discovery. To facilitate the utilization of the whole deep learning models in temporal causal discovery, we proposed an interpretable transformer-based causal discovery model termed CausalFormer, which consists of the causality-aware transformer and the decomposition-based causality detector. The causality-aware transformer learns the causal representation of time series data using a prediction task with the designed multi-kernel causal convolution which aggregates each input time series along the temporal dimension under the temporal priority constraint. Then, the decomposition-based causality detector interprets the global structure of the trained causality-aware transformer with the proposed regression relevance propagation to identify potential causal relations and finally construct the causal graph. Experiments on synthetic, simulated, and real datasets demonstrate the state-of-the-art performance of CausalFormer on discovering temporal causality. Our code is available at https://github.com/lingbai-kong/CausalFormer.
Abstract:Disentangling attributes of various sensory signals is central to human-like perception and reasoning and a critical task for higher-order cognitive and neuro-symbolic AI systems. An elegant approach to represent this intricate factorization is via high-dimensional holographic vectors drawing on brain-inspired vector symbolic architectures. However, holographic factorization involves iterative computation with high-dimensional matrix-vector multiplications and suffers from non-convergence problems. In this paper, we present H3DFact, a heterogeneous 3D integrated in-memory compute engine capable of efficiently factorizing high-dimensional holographic representations. H3DFact exploits the computation-in-superposition capability of holographic vectors and the intrinsic stochasticity associated with memristive-based 3D compute-in-memory. Evaluated on large-scale factorization and perceptual problems, H3DFact demonstrates superior capability in factorization accuracy and operational capacity by up to five orders of magnitude, with 5.5x compute density, 1.2x energy efficiency improvements, and 5.9x less silicon footprint compared to iso-capacity 2D designs.
Abstract:The remarkable advancements in artificial intelligence (AI), primarily driven by deep neural networks, have significantly impacted various aspects of our lives. However, the current challenges surrounding unsustainable computational trajectories, limited robustness, and a lack of explainability call for the development of next-generation AI systems. Neuro-symbolic AI (NSAI) emerges as a promising paradigm, fusing neural, symbolic, and probabilistic approaches to enhance interpretability, robustness, and trustworthiness while facilitating learning from much less data. Recent NSAI systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities. In this paper, we provide a systematic review of recent progress in NSAI and analyze the performance characteristics and computational operators of NSAI models. Furthermore, we discuss the challenges and potential future directions of NSAI from both system and architectural perspectives.
Abstract:With the rapid amassing of spatial-temporal (ST) ocean data, many spatial-temporal data mining (STDM) studies have been conducted to address various oceanic issues, including climate forecasting and disaster warning. Compared with typical ST data (e.g., traffic data), ST ocean data is more complicated but with unique characteristics, e.g., diverse regionality and high sparsity. These characteristics make it difficult to design and train STDM models on ST ocean data. To the best of our knowledge, a comprehensive survey of existing studies remains missing in the literature, which hinders not only computer scientists from identifying the research issues in ocean data mining but also ocean scientists to apply advanced STDM techniques. In this paper, we provide a comprehensive survey of existing STDM studies for ocean science. Concretely, we first review the widely-used ST ocean datasets and highlight their unique characteristics. Then, typical ST ocean data quality enhancement techniques are explored. Next, we classify existing STDM studies in ocean science into four types of tasks, i.e., prediction, event detection, pattern mining, and anomaly detection, and elaborate on the techniques for these tasks. Finally, promising research opportunities are discussed. This survey can help scientists from both computer science and ocean science better understand the fundamental concepts, key techniques, and open challenges of STDM for ocean science.