Macquarie University
Abstract:Graph neural networks have emerged as a leading architecture for many graph-level tasks such as graph classification and graph generation with a notable improvement. Among these tasks, graph pooling is an essential component of graph neural network architectures for obtaining a holistic graph-level representation of the entire graph. Although a great variety of methods have been proposed in this promising and fast-developing research field, to the best of our knowledge, little effort has been made to systematically summarize these methods. To set the stage for the development of future works, in this paper, we attempt to fill this gap by providing a broad review of recent methods on graph pooling. Specifically, 1) we first propose a taxonomy of existing graph pooling methods and provide a mathematical summary for each category; 2) next, we provide an overview of the libraries related to graph pooling, including the commonly used datasets, model architectures for downstream tasks, and open-source implementations; 3) then, we further outline in brief the applications that incorporate the idea of graph pooling in a number of domains; 4) and finally, we discuss some critical challenges faced by the current studies and share our insights on potential directions for improving graph pooling in the future.
Abstract:Modern neuroimaging techniques, such as diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI), enable us to model the human brain as a brain network or connectome. Capturing brain networks' structural information and hierarchical patterns is essential for understanding brain functions and disease states. Recently, the promising network representation learning capability of graph neural networks (GNNs) has prompted many GNN-based methods for brain network analysis to be proposed. Specifically, these methods apply feature aggregation and global pooling to convert brain network instances into meaningful low-dimensional representations used for downstream brain network analysis tasks. However, existing GNN-based methods often neglect that brain networks of different subjects may require various aggregation iterations and use GNN with a fixed number of layers to learn all brain networks. Therefore, how to fully release the potential of GNNs to promote brain network analysis is still non-trivial. To solve this problem, we propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network. Concretely, BN-GNN employs deep reinforcement learning (DRL) to train a meta-policy to automatically determine the optimal number of feature aggregations (reflected in the number of GNN layers) required for a given brain network. Extensive experiments on eight real-world brain network datasets demonstrate that our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
Abstract:Generative adversarial network (GAN) is widely used for generalized and robust learning on graph data. However, for non-Euclidean graph data, the existing GAN-based graph representation methods generate negative samples by random walk or traverse in discrete space, leading to the information loss of topological properties (e.g. hierarchy and circularity). Moreover, due to the topological heterogeneity (i.e., different densities across the graph structure) of graph data, they suffer from serious topological distortion problems. In this paper, we proposed a novel Curvature Graph Generative Adversarial Networks method, named \textbf{\modelname}, which is the first GAN-based graph representation method in the Riemannian geometric manifold. To better preserve the topological properties, we approximate the discrete structure as a continuous Riemannian geometric manifold and generate negative samples efficiently from the wrapped normal distribution. To deal with the topological heterogeneity, we leverage the Ricci curvature for local structures with different topological properties, obtaining to low-distortion representations. Extensive experiments show that CurvGAN consistently and significantly outperforms the state-of-the-art methods across multiple tasks and shows superior robustness and generalization.
Abstract:Oriented object detection is a crucial task in computer vision. Current top-down oriented detection methods usually directly detect entire objects, and not only neglecting the authentic direction of targets, but also do not fully utilise the key semantic information, which causes a decrease in detection accuracy. In this study, we developed a single-stage rotating object detector via two points with a solar corona heatmap (ROTP) to detect oriented objects. The ROTP predicts parts of the object and then aggregates them to form a whole image. Herein, we meticulously represent an object in a random direction using the vertex, centre point with width, and height. Specifically, we regress two heatmaps that characterise the relative location of each object, which enhances the accuracy of locating objects and avoids deviations caused by angle predictions. To rectify the central misjudgement of the Gaussian heatmap on high-aspect ratio targets, we designed a solar corona heatmap generation method to improve the perception difference between the central and non-central samples. Additionally, we predicted the vertex relative to the direction of the centre point to connect two key points that belong to the same goal. Experiments on the HRSC 2016, UCASAOD, and DOTA datasets show that our ROTP achieves the most advanced performance with a simpler modelling and less manual intervention.
Abstract:Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Abstract:Artificial intelligence (AI) provides a promising substitution for streamlining COVID-19 diagnoses. However, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalised model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution under a federated learning framework (FL) without data sharing. Here we show that our FL model outperformed all the local models by a large yield (test sensitivity /specificity in China: 0.973/0.951, in the UK: 0.730/0.942), achieving comparable performance with a panel of professional radiologists. We further evaluated the model on the hold-out (collected from another two hospitals leaving out the FL) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK. Collectively, our work advanced the prospects of utilising federated learning for privacy-preserving AI in digital health.
Abstract:Graph Neural Networks (GNNs) have been widely studied in various graph data mining tasks. Most existingGNNs embed graph data into Euclidean space and thus are less effective to capture the ubiquitous hierarchical structures in real-world networks. Hyperbolic Graph Neural Networks(HGNNs) extend GNNs to hyperbolic space and thus are more effective to capture the hierarchical structures of graphs in node representation learning. In hyperbolic geometry, the graph hierarchical structure can be reflected by the curvatures of the hyperbolic space, and different curvatures can model different hierarchical structures of a graph. However, most existing HGNNs manually set the curvature to a fixed value for simplicity, which achieves a suboptimal performance of graph learning due to the complex and diverse hierarchical structures of the graphs. To resolve this problem, we propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks. Specifically, ACE-HGNN exploits a multi-agent reinforcement learning framework and contains two agents, ACE-Agent andHGNN-Agent for learning the curvature and node representations, respectively. The two agents are updated by a NashQ-leaning algorithm collaboratively, seeking the optimal hyperbolic space indexed by the curvature. Extensive experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
Abstract:Adaptive traffic signal control plays a significant role in the construction of smart cities. This task is challenging because of many essential factors, such as cooperation among neighboring intersections and dynamic traffic scenarios. First, to facilitate cooperation of traffic signals, existing work adopts graph neural networks to incorporate the temporal and spatial influences of the surrounding intersections into the target intersection, where spatial-temporal information is used separately. However, one drawback of these methods is that the spatial-temporal correlations are not adequately exploited to obtain a better control scheme. Second, in a dynamic traffic environment, the historical state of the intersection is also critical for predicting future signal switching. Previous work mainly solves this problem using the current intersection's state, neglecting the fact that traffic flow is continuously changing both spatially and temporally and does not handle the historical state. In this paper, we propose a novel neural network framework named DynSTGAT, which integrates dynamic historical state into a new spatial-temporal graph attention network to address the above two problems. More specifically, our DynSTGAT model employs a novel multi-head graph attention mechanism, which aims to adequately exploit the joint relations of spatial-temporal information. Then, to efficiently utilize the historical state information of the intersection, we design a sequence model with the temporal convolutional network (TCN) to capture the historical information and further merge it with the spatial information to improve its performance. Extensive experiments conducted in the multi-intersection scenario on synthetic data and real-world data confirm that our method can achieve superior performance in travel time and throughput against the state-of-the-art methods.
Abstract:Event extraction (EE), which acquires structural event knowledge from texts, can be divided into two sub-tasks: event type classification and element extraction (namely identifying triggers and arguments under different role patterns). As different event types always own distinct extraction schemas (i.e., role patterns), previous work on EE usually follows an isolated learning paradigm, performing element extraction independently for different event types. It ignores meaningful associations among event types and argument roles, leading to relatively poor performance for less frequent types/roles. This paper proposes a novel neural association framework for the EE task. Given a document, it first performs type classification via constructing a document-level graph to associate sentence nodes of different types, and adopting a graph attention network to learn sentence embeddings. Then, element extraction is achieved by building a universal schema of argument roles, with a parameter inheritance mechanism to enhance role preference for extracted elements. As such, our model takes into account type and role associations during EE, enabling implicit information sharing among them. Experimental results show that our approach consistently outperforms most state-of-the-art EE methods in both sub-tasks. Particularly, for types/roles with less training data, the performance is superior to the existing methods.
Abstract:Recently published graph neural networks (GNNs) show promising performance at social event detection tasks. However, most studies are oriented toward monolingual data in languages with abundant training samples. This has left the more common multilingual settings and lesser-spoken languages relatively unexplored. Thus, we present a GNN that incorporates cross-lingual word embeddings for detecting events in multilingual data streams. The first exploit is to make the GNN work with multilingual data. For this, we outline a construction strategy that aligns messages in different languages at both the node and semantic levels. Relationships between messages are established by merging entities that are the same but are referred to in different languages. Non-English message representations are converted into English semantic space via the cross-lingual word embeddings. The resulting message graph is then uniformly encoded by a GNN model. In special cases where a lesser-spoken language needs to be detected, a novel cross-lingual knowledge distillation framework, called CLKD, exploits prior knowledge learned from similar threads in English to make up for the paucity of annotated data. Experiments on both synthetic and real-world datasets show the framework to be highly effective at detection in both multilingual data and in languages where training samples are scarce.