Abstract:Dynamic treatment regimes (DTRs) are critical to precision medicine, optimizing long-term outcomes through personalized, real-time decision-making in evolving clinical contexts, but require careful supervision for unsafe treatment risks. Existing efforts rely primarily on clinician-prescribed gold standards despite the absence of a known optimal strategy, and predominantly using structured EHR data without extracting valuable insights from clinical notes, limiting their reliability for treatment recommendations. In this work, we introduce SAFER, a calibrated risk-aware tabular-language recommendation framework for DTR that integrates both structured EHR and clinical notes, enabling them to learn from each other, and addresses inherent label uncertainty by assuming ambiguous optimal treatment solution for deceased patients. Moreover, SAFER employs conformal prediction to provide statistical guarantees, ensuring safe treatment recommendations while filtering out uncertain predictions. Experiments on two publicly available sepsis datasets demonstrate that SAFER outperforms state-of-the-art baselines across multiple recommendation metrics and counterfactual mortality rate, while offering robust formal assurances. These findings underscore SAFER potential as a trustworthy and theoretically grounded solution for high-stakes DTR applications.
Abstract:In this paper, we addressed the limitation of relying solely on distribution alignment and source-domain empirical risk minimization in Unsupervised Domain Adaptation (UDA). Our information-theoretic analysis showed that this standard adversarial-based framework neglects the discriminability of target-domain features, leading to suboptimal performance. To bridge this theoretical-practical gap, we defined "good representation learning" as guaranteeing both transferability and discriminability, and proved that an additional loss term targeting target-domain discriminability is necessary. Building on these insights, we proposed a novel adversarial-based UDA framework that explicitly integrates a domain alignment objective with a discriminability-enhancing constraint. Instantiated as Domain-Invariant Representation Learning with Global and Local Consistency (RLGLC), our method leverages Asymmetrically-Relaxed Wasserstein of Wasserstein Distance (AR-WWD) to address class imbalance and semantic dimension weighting, and employs a local consistency mechanism to preserve fine-grained target-domain discriminative information. Extensive experiments across multiple benchmark datasets demonstrate that RLGLC consistently surpasses state-of-the-art methods, confirming the value of our theoretical perspective and underscoring the necessity of enforcing both transferability and discriminability in adversarial-based UDA.
Abstract:Despite the success of recommender systems in alleviating information overload, fairness issues have raised concerns in recent years, potentially leading to unequal treatment for certain user groups. While efforts have been made to improve recommendation fairness, they often assume that users' sensitive attributes are available during model training. However, collecting sensitive information can be difficult, especially on platforms that involve no personal information disclosure. Therefore, we aim to improve recommendation fairness without any access to sensitive attributes. However, this is a non-trivial task because uncovering latent sensitive patterns from complicated user behaviors without explicit sensitive attributes can be difficult. Consequently, suboptimal estimates of sensitive distributions can hinder the fairness training process. To address these challenges, leveraging the remarkable reasoning abilities of Large Language Models (LLMs), we propose a novel LLM-enhanced framework for Fair recommendation withOut Sensitive Attributes (LLMFOSA). A Multi-Persona Sensitive Information Inference module employs LLMs with distinct personas that mimic diverse human perceptions to infer and distill sensitive information. Furthermore, a Confusion-Aware Sensitive Representation Learning module incorporates inference results and rationales to develop robust sensitive representations, considering the mislabeling confusion and collective consensus among agents. The model is then optimized by a formulated mutual information objective. Extensive experiments on two public datasets validate the effectiveness of LLMFOSA in improving fairness.
Abstract:Incorporating collaborative information (CI) effectively is crucial for leveraging LLMs in recommendation tasks. Existing approaches often encode CI using soft tokens or abstract identifiers, which introduces a semantic misalignment with the LLM's natural language pretraining and hampers knowledge integration. To address this, we propose expressing CI directly in natural language to better align with LLMs' semantic space. We achieve this by retrieving a curated set of the most relevant user behaviors in natural language form. However, identifying informative CI is challenging due to the complexity of similarity and utility assessment. To tackle this, we introduce a Self-assessing COllaborative REtrieval framework (SCORE) following the retrieve-rerank paradigm. First, a Collaborative Retriever (CAR) is developed to consider both collaborative patterns and semantic similarity. Then, a Self-assessing Reranker (SARE) leverages LLMs' own reasoning to assess and prioritize retrieved behaviors. Finally, the selected behaviors are prepended to the LLM prompt as natural-language CI to guide recommendation. Extensive experiments on two public datasets validate the effectiveness of SCORE in improving LLM-based recommendation.
Abstract:We present the Semantics-aware Dataset and Benchmark Generation Pipeline for Open-vocabulary Object Navigation in Dynamic Scenes (SD-OVON). It utilizes pretraining multimodal foundation models to generate infinite unique photo-realistic scene variants that adhere to real-world semantics and daily commonsense for the training and the evaluation of navigation agents, accompanied with a plugin for generating object navigation task episodes compatible to the Habitat simulator. In addition, we offer two pre-generated object navigation task datasets, SD-OVON-3k and SD-OVON-10k, comprising respectively about 3k and 10k episodes of the open-vocabulary object navigation task, derived from the SD-OVON-Scenes dataset with 2.5k photo-realistic scans of real-world environments and the SD-OVON-Objects dataset with 0.9k manually inspected scanned and artist-created manipulatable object models. Unlike prior datasets limited to static environments, SD-OVON covers dynamic scenes and manipulatable objects, facilitating both real-to-sim and sim-to-real robotic applications. This approach enhances the realism of navigation tasks, the training and the evaluation of open-vocabulary object navigation agents in complex settings. To demonstrate the effectiveness of our pipeline and datasets, we propose two baselines and evaluate them along with state-of-the-art baselines on SD-OVON-3k. The datasets, benchmark and source code are publicly available.
Abstract:A practical approach to activate long chain-of-thoughts reasoning ability in pre-trained large language models is to perform supervised fine-tuning on instruction datasets synthesized by strong Large Reasoning Models such as DeepSeek-R1, offering a cost-effective alternative to reinforcement learning. However, large-scale instruction sets with more than 100k samples incur significant training overhead, while effective strategies for automatic long-CoT instruction selection still remain unexplored. In this work, we propose Select2Reason, a novel and efficient instruction-tuning data selection framework for long-CoT reasoning. From the perspective of emergence of rethinking behaviors like self-correction and backtracking, we investigate common metrics that may determine the quality of long-CoT reasoning instructions. Select2Reason leverages a quantifier to estimate difficulty of question and jointly incorporates a reasoning trace length-based heuristic through a weighted scheme for ranking to prioritize high-utility examples. Empirical results on OpenR1-Math-220k demonstrate that fine-tuning LLM on only 10% of the data selected by Select2Reason achieves performance competitive with or superior to full-data tuning and open-source baseline OpenR1-Qwen-7B across three competition-level and six comprehensive mathematical benchmarks. Further experiments highlight the scalability in varying data size, efficiency during inference, and its adaptability to other instruction pools with minimal cost.
Abstract:This paper addresses the challenge of graph domain adaptation on evolving, multiple out-of-distribution (OOD) graphs. Conventional graph domain adaptation methods are confined to single-step adaptation, making them ineffective in handling continuous domain shifts and prone to catastrophic forgetting. This paper introduces the Graph Continual Adaptive Learning (GCAL) method, designed to enhance model sustainability and adaptability across various graph domains. GCAL employs a bilevel optimization strategy. The "adapt" phase uses an information maximization approach to fine-tune the model with new graph domains while re-adapting past memories to mitigate forgetting. Concurrently, the "generate memory" phase, guided by a theoretical lower bound derived from information bottleneck theory, involves a variational memory graph generation module to condense original graphs into memories. Extensive experimental evaluations demonstrate that GCAL substantially outperforms existing methods in terms of adaptability and knowledge retention.
Abstract:Large language models (LLMs) excel at complex tasks thanks to advances in reasoning abilities. However, existing methods overlook the trade-off between reasoning effectiveness and computational efficiency, often encouraging unnecessarily long reasoning chains and wasting tokens. To address this, we propose Learning to Think (L2T), an information-theoretic reinforcement fine-tuning framework for LLMs to make the models achieve optimal reasoning with fewer tokens. Specifically, L2T treats each query-response interaction as a hierarchical session of multiple episodes and proposes a universal dense process reward, i.e., quantifies the episode-wise information gain in parameters, requiring no extra annotations or task-specific evaluators. We propose a method to quickly estimate this reward based on PAC-Bayes bounds and the Fisher information matrix. Theoretical analyses show that it significantly reduces computational complexity with high estimation accuracy. By immediately rewarding each episode's contribution and penalizing excessive updates, L2T optimizes the model via reinforcement learning to maximize the use of each episode and achieve effective updates. Empirical results on various reasoning benchmarks and base models demonstrate the advantage of L2T across different tasks, boosting both reasoning effectiveness and efficiency.
Abstract:Post-training plays a crucial role in refining and aligning large language models to meet specific tasks and human preferences. While recent advancements in post-training techniques, such as Group Relative Policy Optimization (GRPO), leverage increased sampling with relative reward scoring to achieve superior performance, these methods often suffer from training instability that limits their practical adoption. To address this challenge, we present Group Variance Policy Optimization (GVPO). GVPO incorporates the analytical solution to KL-constrained reward maximization directly into its gradient weights, ensuring alignment with the optimal policy. The method provides intuitive physical interpretations: its gradient mirrors the mean squared error between the central distance of implicit rewards and that of actual rewards. GVPO offers two key advantages: (1) it guarantees a unique optimal solution, exactly the KL-constrained reward maximization objective, (2) it supports flexible sampling distributions that avoids on-policy and importance sampling limitations. By unifying theoretical guarantees with practical adaptability, GVPO establishes a new paradigm for reliable and versatile LLM post-training.
Abstract:The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.