Abstract:Freeform handwriting authentication verifies a person's identity from their writing style and habits in messy handwriting data. This technique has gained widespread attention in recent years as a valuable tool for various fields, e.g., fraud prevention and cultural heritage protection. However, it still remains a challenging task in reality due to three reasons: (i) severe damage, (ii) complex high-dimensional features, and (iii) lack of supervision. To address these issues, we propose SherlockNet, an energy-oriented two-branch contrastive self-supervised learning framework for robust and fast freeform handwriting authentication. It consists of four stages: (i) pre-processing: converting manuscripts into energy distributions using a novel plug-and-play energy-oriented operator to eliminate the influence of noise; (ii) generalized pre-training: learning general representation through two-branch momentum-based adaptive contrastive learning with the energy distributions, which handles the high-dimensional features and spatial dependencies of handwriting; (iii) personalized fine-tuning: calibrating the learned knowledge using a small amount of labeled data from downstream tasks; and (iv) practical application: identifying individual handwriting from scrambled, missing, or forged data efficiently and conveniently. Considering the practicality, we construct EN-HA, a novel dataset that simulates data forgery and severe damage in real applications. Finally, we conduct extensive experiments on six benchmark datasets including our EN-HA, and the results prove the robustness and efficiency of SherlockNet.
Abstract:An effective paradigm of multi-modal learning (MML) is to learn unified representations among modalities. From a causal perspective, constraining the consistency between different modalities can mine causal representations that convey primary events. However, such simple consistency may face the risk of learning insufficient or unnecessary information: a necessary but insufficient cause is invariant across modalities but may not have the required accuracy; a sufficient but unnecessary cause tends to adapt well to specific modalities but may be hard to adapt to new data. To address this issue, in this paper, we aim to learn representations that are both causal sufficient and necessary, i.e., Causal Complete Cause ($C^3$), for MML. Firstly, we define the concept of $C^3$ for MML, which reflects the probability of being causal sufficiency and necessity. We also propose the identifiability and measurement of $C^3$, i.e., $C^3$ risk, to ensure calculating the learned representations' $C^3$ scores in practice. Then, we theoretically prove the effectiveness of $C^3$ risk by establishing the performance guarantee of MML with a tight generalization bound. Based on these theoretical results, we propose a plug-and-play method, namely Causal Complete Cause Regularization ($C^3$R), to learn causal complete representations by constraining the $C^3$ risk bound. Extensive experiments conducted on various benchmark datasets empirically demonstrate the effectiveness of $C^3$R.
Abstract:Long-term time series forecasting is a long-standing challenge in various applications. A central issue in time series forecasting is that methods should expressively capture long-term dependency. Furthermore, time series forecasting methods should be flexible when applied to different scenarios. Although Fourier analysis offers an alternative to effectively capture reusable and periodic patterns to achieve long-term forecasting in different scenarios, existing methods often assume high-frequency components represent noise and should be discarded in time series forecasting. However, we conduct a series of motivation experiments and discover that the role of certain frequencies varies depending on the scenarios. In some scenarios, removing high-frequency components from the original time series can improve the forecasting performance, while in others scenarios, removing them is harmful to forecasting performance. Therefore, it is necessary to treat the frequencies differently according to specific scenarios. To achieve this, we first reformulate the time series forecasting problem as learning a transfer function of each frequency in the Fourier domain. Further, we design Frequency Dynamic Fusion (FreDF), which individually predicts each Fourier component, and dynamically fuses the output of different frequencies. Moreover, we provide a novel insight into the generalization ability of time series forecasting and propose the generalization bound of time series forecasting. Then we prove FreDF has a lower bound, indicating that FreDF has better generalization ability. Extensive experiments conducted on multiple benchmark datasets and ablation studies demonstrate the effectiveness of FreDF.
Abstract:Self-supervised learning (SSL) has recently achieved significant success in downstream visual tasks. However, a notable gap still exists between SSL and supervised learning (SL), especially in complex downstream tasks. In this paper, we show that the features learned by SSL methods suffer from the crowding problem, where features of different classes are not distinctly separated, and features within the same class exhibit large intra-class variance. In contrast, SL ensures a clear separation between classes. We analyze this phenomenon and conclude that SSL objectives do not constrain the relationships between different samples and their augmentations. Our theoretical analysis delves into how SSL objectives fail to enforce the necessary constraints between samples and their augmentations, leading to poor performance in complex tasks. We provide a theoretical framework showing that the performance gap between SSL and SL mainly stems from the inability of SSL methods to capture the aggregation of similar augmentations and the separation of dissimilar augmentations. To address this issue, we propose a learnable regulator called Dynamic Semantic Adjuster (DSA). DSA aggregates and separates samples in the feature space while being robust to outliers. Through extensive empirical evaluations on multiple benchmark datasets, we demonstrate the superiority of DSA in enhancing feature aggregation and separation, ultimately closing the performance gap between SSL and SL.
Abstract:Multi-modal methods establish comprehensive superiority over uni-modal methods. However, the imbalanced contributions of different modalities to task-dependent predictions constantly degrade the discriminative performance of canonical multi-modal methods. Based on the contribution to task-dependent predictions, modalities can be identified as predominant and auxiliary modalities. Benchmark methods raise a tractable solution: augmenting the auxiliary modality with a minor contribution during training. However, our empirical explorations challenge the fundamental idea behind such behavior, and we further conclude that benchmark approaches suffer from certain defects: insufficient theoretical interpretability and limited exploration capability of discriminative knowledge. To this end, we revisit multi-modal representation learning from a causal perspective and build the Structural Causal Model. Following the empirical explorations, we determine to capture the true causality between the discriminative knowledge of predominant modality and predictive label while considering the auxiliary modality. Thus, we introduce the $\beta$-generalization front-door criterion. Furthermore, we propose a novel network for sufficiently exploring multi-modal discriminative knowledge. Rigorous theoretical analyses and various empirical evaluations are provided to support the effectiveness of the innate mechanism behind our proposed method.
Abstract:When engaging in end-to-end graph representation learning with Graph Neural Networks (GNNs), the intricate causal relationships and rules inherent in graph data pose a formidable challenge for the model in accurately capturing authentic data relationships. A proposed mitigating strategy involves the direct integration of rules or relationships corresponding to the graph data into the model. However, within the domain of graph representation learning, the inherent complexity of graph data obstructs the derivation of a comprehensive causal structure that encapsulates universal rules or relationships governing the entire dataset. Instead, only specialized diminutive causal structures, delineating specific causal relationships within constrained subsets of graph data, emerge as discernible. Motivated by empirical insights, it is observed that GNN models exhibit a tendency to converge towards such specialized causal structures during the training process. Consequently, we posit that the introduction of these specific causal structures is advantageous for the training of GNN models. Building upon this proposition, we introduce a novel method that enables GNN models to glean insights from these specialized diminutive causal structures, thereby enhancing overall performance. Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures and incorporates interchange intervention to optimize the learning process. Theoretical analysis serves to corroborate the efficacy of our proposed method. Furthermore, empirical experiments consistently demonstrate significant performance improvements across diverse datasets.
Abstract:Pre-trained large-scale models have become a major research focus, but their effectiveness is limited in real-world applications due to diverse data distributions. In contrast, humans excel at decision-making across various domains by learning reusable knowledge that remains invariant despite environmental changes in a complex world. Although CLIP, as a successful vision-language pre-trained model, demonstrates remarkable performance in various visual downstream tasks, our experiments reveal unsatisfactory results in specific domains. Our further analysis with causal inference exposes the current CLIP model's inability to capture the invariant causal mechanisms across domains, attributed to its deficiency in identifying latent factors generating the data. To address this, we propose the Invariant Causal Mechanism of CLIP (CLIP-ICM), an algorithm designed to provably identify invariant latent factors with the aid of interventional data, and perform accurate prediction on various domains. Theoretical analysis demonstrates that our method has a lower generalization bound in out-of-distribution (OOD) scenarios. Experimental results showcase the outstanding performance of CLIP-ICM.
Abstract:The goal of generality in machine learning is to achieve excellent performance on various unseen tasks and domains. Recently, self-supervised learning (SSL) has been regarded as an effective method to achieve this goal. It can learn high-quality representations from unlabeled data and achieve promising empirical performance on multiple downstream tasks. Existing SSL methods mainly constrain generality from two aspects: (i) large-scale training data, and (ii) learning task-level shared knowledge. However, these methods lack explicit modeling of the SSL generality in the learning objective, and the theoretical understanding of SSL's generality remains limited. This may cause SSL models to overfit in data-scarce situations and generalize poorly in the real world, making it difficult to achieve true generality. To address these issues, we provide a theoretical definition of generality in SSL and define a $\sigma$-measurement to help quantify it. Based on this insight, we explicitly model generality into self-supervised learning and further propose a novel SSL framework, called GeSSL. It introduces a self-motivated target based on $\sigma$-measurement, which enables the model to find the optimal update direction towards generality. Extensive theoretical and empirical evaluations demonstrate the superior performance of the proposed GeSSL.
Abstract:Micro-expressions (MEs) are involuntary movements revealing people's hidden feelings, which has attracted numerous interests for its objectivity in emotion detection. However, despite its wide applications in various scenarios, micro-expression recognition (MER) remains a challenging problem in real life due to three reasons, including (i) data-level: lack of data and imbalanced classes, (ii) feature-level: subtle, rapid changing, and complex features of MEs, and (iii) decision-making-level: impact of individual differences. To address these issues, we propose a dual-branch meta-auxiliary learning method, called LightmanNet, for fast and robust micro-expression recognition. Specifically, LightmanNet learns general MER knowledge from limited data through a dual-branch bi-level optimization process: (i) In the first level, it obtains task-specific MER knowledge by learning in two branches, where the first branch is for learning MER features via primary MER tasks, while the other branch is for guiding the model obtain discriminative features via auxiliary tasks, i.e., image alignment between micro-expressions and macro-expressions since their resemblance in both spatial and temporal behavioral patterns. The two branches of learning jointly constrain the model of learning meaningful task-specific MER knowledge while avoiding learning noise or superficial connections between MEs and emotions that may damage its generalization ability. (ii) In the second level, LightmanNet further refines the learned task-specific knowledge, improving model generalization and efficiency. Extensive experiments on various benchmark datasets demonstrate the superior robustness and efficiency of LightmanNet.
Abstract:Transformer-based methods have made significant progress in time series forecasting (TSF). They primarily handle two types of tokens, i.e., temporal tokens that contain all variables of the same timestamp, and variable tokens that contain all input time points for a specific variable. Transformer-based methods rely on positional encoding (PE) to mark tokens' positions, facilitating the model to perceive the correlation between tokens. However, in TSF, research on PE remains insufficient. To address this gap, we conduct experiments and uncover intriguing properties of existing PEs in TSF: (i) The positional information injected by PEs diminishes as the network depth increases; (ii) Enhancing positional information in deep networks is advantageous for improving the model's performance; (iii) PE based on the similarity between tokens can improve the model's performance. Motivated by these findings, we introduce two new PEs: Temporal Position Encoding (T-PE) for temporal tokens and Variable Positional Encoding (V-PE) for variable tokens. Both T-PE and V-PE incorporate geometric PE based on tokens' positions and semantic PE based on the similarity between tokens but using different calculations. To leverage both the PEs, we design a Transformer-based dual-branch framework named T2B-PE. It first calculates temporal tokens' correlation and variable tokens' correlation respectively and then fuses the dual-branch features through the gated unit. Extensive experiments demonstrate the superior robustness and effectiveness of T2B-PE. The code is available at: \href{https://github.com/jlu-phyComputer/T2B-PE}{https://github.com/jlu-phyComputer/T2B-PE}.