Abstract:Large language models (LLMs) excel at complex tasks thanks to advances in reasoning abilities. However, existing methods overlook the trade-off between reasoning effectiveness and computational efficiency, often encouraging unnecessarily long reasoning chains and wasting tokens. To address this, we propose Learning to Think (L2T), an information-theoretic reinforcement fine-tuning framework for LLMs to make the models achieve optimal reasoning with fewer tokens. Specifically, L2T treats each query-response interaction as a hierarchical session of multiple episodes and proposes a universal dense process reward, i.e., quantifies the episode-wise information gain in parameters, requiring no extra annotations or task-specific evaluators. We propose a method to quickly estimate this reward based on PAC-Bayes bounds and the Fisher information matrix. Theoretical analyses show that it significantly reduces computational complexity with high estimation accuracy. By immediately rewarding each episode's contribution and penalizing excessive updates, L2T optimizes the model via reinforcement learning to maximize the use of each episode and achieve effective updates. Empirical results on various reasoning benchmarks and base models demonstrate the advantage of L2T across different tasks, boosting both reasoning effectiveness and efficiency.
Abstract:The use of large language models (LLMs) as feature enhancers to optimize node representations, which are then used as inputs for graph neural networks (GNNs), has shown significant potential in graph representation learning. However, the fundamental properties of this approach remain underexplored. To address this issue, we propose conducting a more in-depth analysis of this issue based on the interchange intervention method. First, we construct a synthetic graph dataset with controllable causal relationships, enabling precise manipulation of semantic relationships and causal modeling to provide data for analysis. Using this dataset, we conduct interchange interventions to examine the deeper properties of LLM enhancers and GNNs, uncovering their underlying logic and internal mechanisms. Building on the analytical results, we design a plug-and-play optimization module to improve the information transfer between LLM enhancers and GNNs. Experiments across multiple datasets and models validate the proposed module.
Abstract:Despite the strength of the Segment Anything Model (SAM), it struggles with generalization issues in open-vocabulary multi-entity segmentation (OVMS). Through empirical and causal analyses, we find that (i) the prompt bias is the primary cause of the generalization issues; (ii) this bias is closely tied to the task-irrelevant generating factors within the prompts, which act as confounders and affect generalization. To address the generalization issues, we aim to propose a method that can calibrate prompts to eliminate confounders for accurate OVMS. Building upon the causal analysis, we propose that the optimal prompt for OVMS should contain only task-relevant causal factors. We define it as the causal prompt, serving as the goal of calibration. Next, our theoretical analysis, grounded by causal multi-distribution consistency theory, proves that this prompt can be obtained by enforcing segmentation consistency and optimality. Inspired by this, we propose CPC-SAM, a Causal Prompt Calibration method for SAM to achieve accurate OVMS. It integrates a lightweight causal prompt learner (CaPL) into SAM to obtain causal prompts. Specifically, we first generate multiple prompts using random annotations to simulate diverse distributions and then reweight them via CaPL by enforcing causal multi-distribution consistency in both task and entity levels. To ensure obtaining causal prompts, CaPL is optimized by minimizing the cumulative segmentation loss across the reweighted prompts to achieve consistency and optimality. A bi-level optimization strategy alternates between optimizing CaPL and SAM, ensuring accurate OVMS. Extensive experiments validate its superiority.
Abstract:Fine-grained emotion recognition (FER) plays a vital role in various fields, such as disease diagnosis, personalized recommendations, and multimedia mining. However, existing FER methods face three key challenges in real-world applications: (i) they rely on large amounts of continuously annotated data to ensure accuracy since emotions are complex and ambiguous in reality, which is costly and time-consuming; (ii) they cannot capture the temporal heterogeneity caused by changing emotion patterns, because they usually assume that the temporal correlation within sampling periods is the same; (iii) they do not consider the spatial heterogeneity of different FER scenarios, that is, the distribution of emotion information in different data may have bias or interference. To address these challenges, we propose a Spatio-Temporal Fuzzy-oriented Multi-modal Meta-learning framework (ST-F2M). Specifically, ST-F2M first divides the multi-modal videos into multiple views, and each view corresponds to one modality of one emotion. Multiple randomly selected views for the same emotion form a meta-training task. Next, ST-F2M uses an integrated module with spatial and temporal convolutions to encode the data of each task, reflecting the spatial and temporal heterogeneity. Then it adds fuzzy semantic information to each task based on generalized fuzzy rules, which helps handle the complexity and ambiguity of emotions. Finally, ST-F2M learns emotion-related general meta-knowledge through meta-recurrent neural networks to achieve fast and robust fine-grained emotion recognition. Extensive experiments show that ST-F2M outperforms various state-of-the-art methods in terms of accuracy and model efficiency. In addition, we construct ablation studies and further analysis to explore why ST-F2M performs well.
Abstract:Graph representation learning methods are highly effective in handling complex non-Euclidean data by capturing intricate relationships and features within graph structures. However, traditional methods face challenges when dealing with heterogeneous graphs that contain various types of nodes and edges due to the diverse sources and complex nature of the data. Existing Heterogeneous Graph Neural Networks (HGNNs) have shown promising results but require prior knowledge of node and edge types and unified node feature formats, which limits their applicability. Recent advancements in graph representation learning using Large Language Models (LLMs) offer new solutions by integrating LLMs' data processing capabilities, enabling the alignment of various graph representations. Nevertheless, these methods often overlook heterogeneous graph data and require extensive preprocessing. To address these limitations, we propose a novel method that leverages the strengths of both LLM and GNN, allowing for the processing of graph data with any format and type of nodes and edges without the need for type information or special preprocessing. Our method employs LLM to automatically summarize and classify different data formats and types, aligns node features, and uses a specialized GNN for targeted learning, thus obtaining effective graph representations for downstream tasks. Theoretical analysis and experimental validation have demonstrated the effectiveness of our method.
Abstract:Representations learned by self-supervised approaches are generally considered to possess sufficient generalizability and discriminability. However, we disclose a nontrivial mutual-exclusion relationship between these critical representation properties through an exploratory demonstration on self-supervised learning. State-of-the-art self-supervised methods tend to enhance either generalizability or discriminability but not both simultaneously. Thus, learning representations jointly possessing strong generalizability and discriminability presents a specific challenge for self-supervised learning. To this end, we revisit the learning paradigm of self-supervised learning from the perspective of evolutionary game theory (EGT) and outline the theoretical roadmap to achieve a desired trade-off between these representation properties. EGT performs well in analyzing the trade-off point in a two-player game by utilizing dynamic system modeling. However, the EGT analysis requires sufficient annotated data, which contradicts the principle of self-supervised learning, i.e., the EGT analysis cannot be conducted without the annotations of the specific target domain for self-supervised learning. Thus, to enhance the methodological generalization, we propose a novel self-supervised learning method that leverages advancements in reinforcement learning to jointly benefit from the general guidance of EGT and sequentially optimize the model to chase the consistent improvement of generalizability and discriminability for specific target domains during pre-training. Theoretically, we establish that the proposed method tightens the generalization error upper bound of self-supervised learning. Empirically, our method achieves state-of-the-art performance on various benchmarks.
Abstract:Interior design is a complex and creative discipline involving aesthetics, functionality, ergonomics, and materials science. Effective solutions must meet diverse requirements, typically producing multiple deliverables such as renderings and design drawings from various perspectives. Consequently, interior design processes are often inefficient and demand significant creativity. With advances in machine learning, generative models have emerged as a promising means of improving efficiency by creating designs from text descriptions or sketches. However, few generative works focus on interior design, leading to substantial discrepancies between outputs and practical needs, such as differences in size, spatial scope, and the lack of controllable generation quality. To address these challenges, we propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation. Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone. We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency. Simultaneously, we construct an interior design-specific dataset, DesignHelper, consisting of over 400 solutions across more than 15 spatial types and 15 design styles. This dataset helps fine-tune DiffDesign. Extensive experiments conducted on various benchmark datasets demonstrate the effectiveness and robustness of DiffDesign.
Abstract:Humans excel at adapting perceptions and actions to diverse environments, enabling efficient interaction with the external world. This adaptive capability relies on the biological nervous system (BNS), which activates different brain regions for distinct tasks. Meta-learning similarly trains machines to handle multiple tasks but relies on a fixed network structure, not as flexible as BNS. To investigate the role of flexible network structure (FNS) in meta-learning, we conduct extensive empirical and theoretical analyses, finding that model performance is tied to structure, with no universally optimal pattern across tasks. This reveals the crucial role of FNS in meta-learning, ensuring meta-learning to generate the optimal structure for each task, thereby maximizing the performance and learning efficiency of meta-learning. Motivated by this insight, we propose to define, measure, and model FNS in meta-learning. First, we define that an effective FNS should possess frugality, plasticity, and sensitivity. Then, to quantify FNS in practice, we present three measurements for these properties, collectively forming the \emph{structure constraint} with theoretical supports. Building on this, we finally propose Neuromodulated Meta-Learning (NeuronML) to model FNS in meta-learning. It utilizes bi-level optimization to update both weights and structure with the structure constraint. Extensive theoretical and empirical evaluations demonstrate the effectiveness of NeuronML on various tasks. Code is publicly available at \href{https://github.com/WangJingyao07/NeuronML}{https://github.com/WangJingyao07/NeuronML}.
Abstract:Self-supervised learning (SSL) methods learn from unlabeled data and achieve high generalization performance on downstream tasks. However, they may also suffer from overfitting to their training data and lose the ability to adapt to new tasks. To investigate this phenomenon, we conduct experiments on various SSL methods and datasets and make two observations: (1) Overfitting occurs abruptly in later layers and epochs, while generalizing features are learned in early layers for all epochs; (2) Coding rate reduction can be used as an indicator to measure the degree of overfitting in SSL models. Based on these observations, we propose Undoing Memorization Mechanism (UMM), a plug-and-play method that mitigates overfitting of the pre-trained feature extractor by aligning the feature distributions of the early and the last layers to maximize the coding rate reduction of the last layer output. The learning process of UMM is a bi-level optimization process. We provide a causal analysis of UMM to explain how UMM can help the pre-trained feature extractor overcome overfitting and recover generalization. We also demonstrate that UMM significantly improves the generalization performance of SSL methods on various downstream tasks.
Abstract:Meta-learning has emerged as a powerful approach for leveraging knowledge from previous tasks to solve new tasks. The mainstream methods focus on training a well-generalized model initialization, which is then adapted to different tasks with limited data and updates. However, it pushes the model overfitting on the training tasks. Previous methods mainly attributed this to the lack of data and used augmentations to address this issue, but they were limited by sufficient training and effective augmentation strategies. In this work, we focus on the more fundamental ``learning to learn'' strategy of meta-learning to explore what causes errors and how to eliminate these errors without changing the environment. Specifically, we first rethink the algorithmic procedure of meta-learning from a ``learning'' lens. Through theoretical and empirical analyses, we find that (i) this paradigm faces the risk of both overfitting and underfitting and (ii) the model adapted to different tasks promote each other where the effect is stronger if the tasks are more similar. Based on this insight, we propose using task relations to calibrate the optimization process of meta-learning and propose a plug-and-play method called Task Relation Learner (TRLearner) to achieve this goal. Specifically, it first obtains task relation matrices from the extracted task-specific meta-data. Then, it uses the obtained matrices with relation-aware consistency regularization to guide optimization. Extensive theoretical and empirical analyses demonstrate the effectiveness of TRLearner.