Abstract:We aim at finetuning a vision-language model without hurting its out-of-distribution (OOD) generalization. We address two types of OOD generalization, i.e., i) domain shift such as natural to sketch images, and ii) zero-shot capability to recognize the category that was not contained in the finetune data. Arguably, the diminished OOD generalization after finetuning stems from the excessively simplified finetuning target, which only provides the class information, such as ``a photo of a [CLASS]''. This is distinct from the process in that CLIP was pretrained, where there is abundant text supervision with rich semantic information. Therefore, we propose to compensate for the finetune process using auxiliary supervision with rich semantic information, which acts as anchors to preserve the OOD generalization. Specifically, two types of anchors are elaborated in our method, including i) text-compensated anchor which uses the images from the finetune set but enriches the text supervision from a pretrained captioner, ii) image-text-pair anchor which is retrieved from the dataset similar to pretraining data of CLIP according to the downstream task, associating with the original CLIP text with rich semantics. Those anchors are utilized as auxiliary semantic information to maintain the original feature space of CLIP, thereby preserving the OOD generalization capabilities. Comprehensive experiments demonstrate that our method achieves in-distribution performance akin to conventional finetuning while attaining new state-of-the-art results on domain shift and zero-shot learning benchmarks.
Abstract:3D building reconstruction from monocular remote sensing images is an important and challenging research problem that has received increasing attention in recent years, owing to its low cost of data acquisition and availability for large-scale applications. However, existing methods rely on expensive 3D-annotated samples for fully-supervised training, restricting their application to large-scale cross-city scenarios. In this work, we propose MLS-BRN, a multi-level supervised building reconstruction network that can flexibly utilize training samples with different annotation levels to achieve better reconstruction results in an end-to-end manner. To alleviate the demand on full 3D supervision, we design two new modules, Pseudo Building Bbox Calculator and Roof-Offset guided Footprint Extractor, as well as new tasks and training strategies for different types of samples. Experimental results on several public and new datasets demonstrate that our proposed MLS-BRN achieves competitive performance using much fewer 3D-annotated samples, and significantly improves the footprint extraction and 3D reconstruction performance compared with current state-of-the-art. The code and datasets of this work will be released at https://github.com/opendatalab/MLS-BRN.git.
Abstract:The generic large Vision-Language Models (VLMs) is rapidly developing, but still perform poorly in Remote Sensing (RS) domain, which is due to the unique and specialized nature of RS imagery and the comparatively limited spatial perception of current VLMs. Existing Remote Sensing specific Vision Language Models (RSVLMs) still have considerable potential for improvement, primarily owing to the lack of large-scale, high-quality RS vision-language datasets. We constructed HqDC-1.4M, the large scale High quality and Detailed Captions for RS images, containing 1.4 million image-caption pairs, which not only enhance the RSVLM's understanding of RS images but also significantly improve the model's spatial perception abilities, such as localization and counting, thereby increasing the helpfulness of the RSVLM. Moreover, to address the inevitable "hallucination" problem in RSVLM, we developed RSSA, the first dataset aimed at enhancing the Self-Awareness capability of RSVLMs. By incorporating a variety of unanswerable questions into typical RS visual question-answering tasks, RSSA effectively improves the truthfulness and reduces the hallucinations of the model's outputs, thereby enhancing the honesty of the RSVLM. Based on these datasets, we proposed the H2RSVLM, the Helpful and Honest Remote Sensing Vision Language Model. H2RSVLM has achieved outstanding performance on multiple RS public datasets and is capable of recognizing and refusing to answer the unanswerable questions, effectively mitigating the incorrect generations. We will release the code, data and model weights at https://github.com/opendatalab/H2RSVLM .
Abstract:This paper investigates the effective utilization of unlabeled data for large-area cross-view geo-localization (CVGL), encompassing both unsupervised and semi-supervised settings. Common approaches to CVGL rely on ground-satellite image pairs and employ label-driven supervised training. However, the cost of collecting precise cross-view image pairs hinders the deployment of CVGL in real-life scenarios. Without the pairs, CVGL will be more challenging to handle the significant imaging and spatial gaps between ground and satellite images. To this end, we propose an unsupervised framework including a cross-view projection to guide the model for retrieving initial pseudo-labels and a fast re-ranking mechanism to refine the pseudo-labels by leveraging the fact that ``the perfectly paired ground-satellite image is located in a unique and identical scene". The framework exhibits competitive performance compared with supervised works on three open-source benchmarks. Our code and models will be released on https://github.com/liguopeng0923/UCVGL.
Abstract:Cross-View Geo-Localization (CVGL) involves determining the geographical location of a query image by matching it with a corresponding GPS-tagged reference image. Current state-of-the-art methods predominantly rely on training models with labeled paired images, incurring substantial annotation costs and training burdens. In this study, we investigate the adaptation of frozen models for CVGL without requiring ground truth pair labels. We observe that training on unlabeled cross-view images presents significant challenges, including the need to establish relationships within unlabeled data and reconcile view discrepancies between uncertain queries and references. To address these challenges, we propose a self-supervised learning framework to train a learnable adapter for a frozen Foundation Model (FM). This adapter is designed to map feature distributions from diverse views into a uniform space using unlabeled data exclusively. To establish relationships within unlabeled data, we introduce an Expectation-Maximization-based Pseudo-labeling module, which iteratively estimates associations between cross-view features and optimizes the adapter. To maintain the robustness of the FM's representation, we incorporate an information consistency module with a reconstruction loss, ensuring that adapted features retain strong discriminative ability across views. Experimental results demonstrate that our proposed method achieves significant improvements over vanilla FMs and competitive accuracy compared to supervised methods, while necessitating fewer training parameters and relying solely on unlabeled data. Evaluation of our adaptation for task-specific models further highlights its broad applicability.
Abstract:Nucleus instance segmentation from histopathology images suffers from the extremely laborious and expert-dependent annotation of nucleus instances. As a promising solution to this task, annotation-efficient deep learning paradigms have recently attracted much research interest, such as weakly-/semi-supervised learning, generative adversarial learning, etc. In this paper, we propose to formulate annotation-efficient nucleus instance segmentation from the perspective of few-shot learning (FSL). Our work was motivated by that, with the prosperity of computational pathology, an increasing number of fully-annotated datasets are publicly accessible, and we hope to leverage these external datasets to assist nucleus instance segmentation on the target dataset which only has very limited annotation. To achieve this goal, we adopt the meta-learning based FSL paradigm, which however has to be tailored in two substantial aspects before adapting to our task. First, since the novel classes may be inconsistent with those of the external dataset, we extend the basic definition of few-shot instance segmentation (FSIS) to generalized few-shot instance segmentation (GFSIS). Second, to cope with the intrinsic challenges of nucleus segmentation, including touching between adjacent cells, cellular heterogeneity, etc., we further introduce a structural guidance mechanism into the GFSIS network, finally leading to a unified Structurally-Guided Generalized Few-Shot Instance Segmentation (SGFSIS) framework. Extensive experiments on a couple of publicly accessible datasets demonstrate that, SGFSIS can outperform other annotation-efficient learning baselines, including semi-supervised learning, simple transfer learning, etc., with comparable performance to fully supervised learning with less than 5% annotations.
Abstract:Oriented object detection has been rapidly developed in the past few years, but most of these methods assume the training and testing images are under the same statistical distribution, which is far from reality. In this paper, we propose the task of domain generalized oriented object detection, which intends to explore the generalization of oriented object detectors on arbitrary unseen target domains. Learning domain generalized oriented object detectors is particularly challenging, as the cross-domain style variation not only negatively impacts the content representation, but also leads to unreliable orientation predictions. To address these challenges, we propose a generalized oriented object detector (GOOD). After style hallucination by the emerging contrastive language-image pre-training (CLIP), it consists of two key components, namely, rotation-aware content consistency learning (RAC) and style consistency learning (SEC). The proposed RAC allows the oriented object detector to learn stable orientation representation from style-diversified samples. The proposed SEC further stabilizes the generalization ability of content representation from different image styles. Extensive experiments on multiple cross-domain settings show the state-of-the-art performance of GOOD. Source code will be publicly available.
Abstract:Advanced change detection techniques primarily target image pairs of equal and high quality. However, variations in imaging conditions and platforms frequently lead to image pairs with distinct qualities: one image being high-quality, while the other being low-quality. These disparities in image quality present significant challenges for understanding image pairs semantically and extracting change features, ultimately resulting in a notable decline in performance. To tackle this challenge, we introduce an innovative training strategy grounded in knowledge distillation. The core idea revolves around leveraging task knowledge acquired from high-quality image pairs to guide the model's learning process when dealing with image pairs that exhibit differences in quality. Additionally, we develop a hierarchical correlation distillation approach (involving self-correlation, cross-correlation, and global correlation). This approach compels the student model to replicate the correlations inherent in the teacher model, rather than focusing solely on individual features. This ensures effective knowledge transfer while maintaining the student model's training flexibility.
Abstract:Precise detection of tiny objects in remote sensing imagery remains a significant challenge due to their limited visual information and frequent occurrence within scenes. This challenge is further exacerbated by the practical burden and inherent errors associated with manual annotation: annotating tiny objects is laborious and prone to errors (i.e., label noise). Training detectors for such objects using noisy labels often leads to suboptimal performance, with networks tending to overfit on noisy labels. In this study, we address the intricate issue of tiny object detection under noisy label supervision. We systematically investigate the impact of various types of noise on network training, revealing the vulnerability of object detectors to class shifts and inaccurate bounding boxes for tiny objects. To mitigate these challenges, we propose a DeNoising Tiny Object Detector (DN-TOD), which incorporates a Class-aware Label Correction (CLC) scheme to address class shifts and a Trend-guided Learning Strategy (TLS) to handle bounding box noise. CLC mitigates inaccurate class supervision by identifying and filtering out class-shifted positive samples, while TLS reduces noisy box-induced erroneous supervision through sample reweighting and bounding box regeneration. Additionally, Our method can be seamlessly integrated into both one-stage and two-stage object detection pipelines. Comprehensive experiments conducted on synthetic (i.e., noisy AI-TOD-v2.0 and DOTA-v2.0) and real-world (i.e., AI-TOD) noisy datasets demonstrate the robustness of DN-TOD under various types of label noise. Notably, when applied to the strong baseline RFLA, DN-TOD exhibits a noteworthy performance improvement of 4.9 points under 40% mixed noise. Datasets, codes, and models will be made publicly available.
Abstract:High-quality annotation of fine-grained visual categories demands great expert knowledge, which is taxing and time consuming. Alternatively, learning fine-grained visual representation from enormous unlabeled images (e.g., species, brands) by self-supervised learning becomes a feasible solution. However, recent researches find that existing self-supervised learning methods are less qualified to represent fine-grained categories. The bottleneck lies in that the pre-text representation is built from every patch-wise embedding, while fine-grained categories are only determined by several key patches of an image. In this paper, we propose a Cross-level Multi-instance Distillation (CMD) framework to tackle the challenge. Our key idea is to consider the importance of each image patch in determining the fine-grained pre-text representation by multiple instance learning. To comprehensively learn the relation between informative patches and fine-grained semantics, the multi-instance knowledge distillation is implemented on both the region/image crop pairs from the teacher and student net, and the region-image crops inside the teacher / student net, which we term as intra-level multi-instance distillation and inter-level multi-instance distillation. Extensive experiments on CUB-200-2011, Stanford Cars and FGVC Aircraft show that the proposed method outperforms the contemporary method by upto 10.14% and existing state-of-the-art self-supervised learning approaches by upto 19.78% on both top-1 accuracy and Rank-1 retrieval metric.