Columbia University Irving Medical Center
Abstract:Foundation models hold significant promise in healthcare, given their capacity to extract meaningful representations independent of downstream tasks. This property has enabled state-of-the-art performance across several clinical applications trained on structured electronic health record (EHR) data, even in settings with limited labeled data, a prevalent challenge in healthcare. However, there is little consensus on these models' potential for clinical utility due to the lack of desiderata of comprehensive and meaningful tasks and sufficiently diverse evaluations to characterize the benefit over conventional supervised learning. To address this gap, we propose a suite of clinically meaningful tasks spanning patient outcomes, early prediction of acute and chronic conditions, including desiderata for robust evaluations. We evaluate state-of-the-art foundation models on EHR data consisting of 5 million patients from Columbia University Irving Medical Center (CUMC), a large urban academic medical center in New York City, across 14 clinically relevant tasks. We measure overall accuracy, calibration, and subpopulation performance to surface tradeoffs based on the choice of pre-training, tokenization, and data representation strategies. Our study aims to advance the empirical evaluation of structured EHR foundation models and guide the development of future healthcare foundation models.
Abstract:Vision-language modeling (VLM) aims to bridge the information gap between images and natural language. Under the new paradigm of first pre-training on massive image-text pairs and then fine-tuning on task-specific data, VLM in the remote sensing domain has made significant progress. The resulting models benefit from the absorption of extensive general knowledge and demonstrate strong performance across a variety of remote sensing data analysis tasks. Moreover, they are capable of interacting with users in a conversational manner. In this paper, we aim to provide the remote sensing community with a timely and comprehensive review of the developments in VLM using the two-stage paradigm. Specifically, we first cover a taxonomy of VLM in remote sensing: contrastive learning, visual instruction tuning, and text-conditioned image generation. For each category, we detail the commonly used network architecture and pre-training objectives. Second, we conduct a thorough review of existing works, examining foundation models and task-specific adaptation methods in contrastive-based VLM, architectural upgrades, training strategies and model capabilities in instruction-based VLM, as well as generative foundation models with their representative downstream applications. Third, we summarize datasets used for VLM pre-training, fine-tuning, and evaluation, with an analysis of their construction methodologies (including image sources and caption generation) and key properties, such as scale and task adaptability. Finally, we conclude this survey with insights and discussions on future research directions: cross-modal representation alignment, vague requirement comprehension, explanation-driven model reliability, continually scalable model capabilities, and large-scale datasets featuring richer modalities and greater challenges.
Abstract:Remote sensing has become critical for understanding environmental dynamics, urban planning, and disaster management. However, traditional remote sensing workflows often rely on explicit segmentation or detection methods, which struggle to handle complex, implicit queries that require reasoning over spatial context, domain knowledge, and implicit user intent. Motivated by this, we introduce a new task, \ie, geospatial pixel reasoning, which allows implicit querying and reasoning and generates the mask of the target region. To advance this task, we construct and release the first large-scale benchmark dataset called EarthReason, which comprises 5,434 manually annotated image masks with over 30,000 implicit question-answer pairs. Moreover, we propose SegEarth-R1, a simple yet effective language-guided segmentation baseline that integrates a hierarchical visual encoder, a large language model (LLM) for instruction parsing, and a tailored mask generator for spatial correlation. The design of SegEarth-R1 incorporates domain-specific adaptations, including aggressive visual token compression to handle ultra-high-resolution remote sensing images, a description projection module to fuse language and multi-scale features, and a streamlined mask prediction pipeline that directly queries description embeddings. Extensive experiments demonstrate that SegEarth-R1 achieves state-of-the-art performance on both reasoning and referring segmentation tasks, significantly outperforming traditional and LLM-based segmentation methods. Our data and code will be released at https://github.com/earth-insights/SegEarth-R1.
Abstract:Background: Conventional prediction methods such as logistic regression and gradient boosting have been widely utilized for disease onset prediction for their reliability and interpretability. Deep learning methods promise enhanced prediction performance by extracting complex patterns from clinical data, but face challenges like data sparsity and high dimensionality. Methods: This study compares conventional and deep learning approaches to predict lung cancer, dementia, and bipolar disorder using observational data from eleven databases from North America, Europe, and Asia. Models were developed using logistic regression, gradient boosting, ResNet, and Transformer, and validated both internally and externally across the data sources. Discrimination performance was assessed using AUROC, and calibration was evaluated using Eavg. Findings: Across 11 datasets, conventional methods generally outperformed deep learning methods in terms of discrimination performance, particularly during external validation, highlighting their better transportability. Learning curves suggest that deep learning models require substantially larger datasets to reach the same performance levels as conventional methods. Calibration performance was also better for conventional methods, with ResNet showing the poorest calibration. Interpretation: Despite the potential of deep learning models to capture complex patterns in structured observational healthcare data, conventional models remain highly competitive for disease onset prediction, especially in scenarios involving smaller datasets and if lengthy training times need to be avoided. The study underscores the need for future research focused on optimizing deep learning models to handle the sparsity, high dimensionality, and heterogeneity inherent in healthcare datasets, and find new strategies to exploit the full capabilities of deep learning methods.
Abstract:The generic large Vision-Language Models (VLMs) is rapidly developing, but still perform poorly in Remote Sensing (RS) domain, which is due to the unique and specialized nature of RS imagery and the comparatively limited spatial perception of current VLMs. Existing Remote Sensing specific Vision Language Models (RSVLMs) still have considerable potential for improvement, primarily owing to the lack of large-scale, high-quality RS vision-language datasets. We constructed HqDC-1.4M, the large scale High quality and Detailed Captions for RS images, containing 1.4 million image-caption pairs, which not only enhance the RSVLM's understanding of RS images but also significantly improve the model's spatial perception abilities, such as localization and counting, thereby increasing the helpfulness of the RSVLM. Moreover, to address the inevitable "hallucination" problem in RSVLM, we developed RSSA, the first dataset aimed at enhancing the Self-Awareness capability of RSVLMs. By incorporating a variety of unanswerable questions into typical RS visual question-answering tasks, RSSA effectively improves the truthfulness and reduces the hallucinations of the model's outputs, thereby enhancing the honesty of the RSVLM. Based on these datasets, we proposed the H2RSVLM, the Helpful and Honest Remote Sensing Vision Language Model. H2RSVLM has achieved outstanding performance on multiple RS public datasets and is capable of recognizing and refusing to answer the unanswerable questions, effectively mitigating the incorrect generations. We will release the code, data and model weights at https://github.com/opendatalab/H2RSVLM .
Abstract:Synthetic Electronic Health Records (EHR) have emerged as a pivotal tool in advancing healthcare applications and machine learning models, particularly for researchers without direct access to healthcare data. Although existing methods, like rule-based approaches and generative adversarial networks (GANs), generate synthetic data that resembles real-world EHR data, these methods often use a tabular format, disregarding temporal dependencies in patient histories and limiting data replication. Recently, there has been a growing interest in leveraging Generative Pre-trained Transformers (GPT) for EHR data. This enables applications like disease progression analysis, population estimation, counterfactual reasoning, and synthetic data generation. In this work, we focus on synthetic data generation and demonstrate the capability of training a GPT model using a particular patient representation derived from CEHR-BERT, enabling us to generate patient sequences that can be seamlessly converted to the Observational Medical Outcomes Partnership (OMOP) data format.
Abstract:Advanced change detection techniques primarily target image pairs of equal and high quality. However, variations in imaging conditions and platforms frequently lead to image pairs with distinct qualities: one image being high-quality, while the other being low-quality. These disparities in image quality present significant challenges for understanding image pairs semantically and extracting change features, ultimately resulting in a notable decline in performance. To tackle this challenge, we introduce an innovative training strategy grounded in knowledge distillation. The core idea revolves around leveraging task knowledge acquired from high-quality image pairs to guide the model's learning process when dealing with image pairs that exhibit differences in quality. Additionally, we develop a hierarchical correlation distillation approach (involving self-correlation, cross-correlation, and global correlation). This approach compels the student model to replicate the correlations inherent in the teacher model, rather than focusing solely on individual features. This ensures effective knowledge transfer while maintaining the student model's training flexibility.
Abstract:In recent years, there has been an increased popularity in image and speech generation using diffusion models. However, directly generating music waveforms from free-form text prompts is still under-explored. In this paper, we propose the first text-to-waveform music generation model that can receive arbitrary texts using diffusion models. We incorporate the free-form textual prompt as the condition to guide the waveform generation process of diffusion models. To solve the problem of lacking such text-music parallel data, we collect a dataset of text-music pairs from the Internet with weak supervision. Besides, we compare the effect of two prompt formats of conditioning texts (music tags and free-form texts) and prove the superior performance of our method in terms of text-music relevance. We further demonstrate that our generated music in the waveform domain outperforms previous works by a large margin in terms of diversity, quality, and text-music relevance.
Abstract:The tilted viewing nature of the off-nadir aerial images brings severe challenges to the building change detection (BCD) problem: the mismatch of the nearby buildings and the semantic ambiguity of the building facades. To tackle these challenges, we present a multi-task guided change detection network model, named as MTGCD-Net. The proposed model approaches the specific BCD problem by designing three auxiliary tasks, including: (1) a pixel-wise classification task to predict the roofs and facades of buildings; (2) an auxiliary task for learning the roof-to-footprint offsets of each building to account for the misalignment between building roof instances; and (3) an auxiliary task for learning the identical roof matching flow between bi-temporal aerial images to tackle the building roof mismatch problem. These auxiliary tasks provide indispensable and complementary building parsing and matching information. The predictions of the auxiliary tasks are finally fused to the main building change detection branch with a multi-modal distillation module. To train and test models for the BCD problem with off-nadir aerial images, we create a new benchmark dataset, named BANDON. Extensive experiments demonstrate that our model achieves superior performance over the previous state-of-the-art competitors.
Abstract:Software engineers working with the same programming language (PL) may speak different natural languages (NLs) and vice versa, erecting huge barriers to communication and working efficiency. Recent studies have demonstrated the effectiveness of generative pre-training in computer programs, yet they are always English-centric. In this work, we step towards bridging the gap between multilingual NLs and multilingual PLs for large language models (LLMs). We release ERNIE-Code, a unified pre-trained language model for 116 NLs and 6 PLs. We employ two methods for universal cross-lingual pre-training: span-corruption language modeling that learns patterns from monolingual NL or PL; and pivot-based translation language modeling that relies on parallel data of many NLs and PLs. Extensive results show that ERNIE-Code outperforms previous multilingual LLMs for PL or NL across a wide range of end tasks of code intelligence, including multilingual code-to-text, text-to-code, code-to-code, and text-to-text generation. We further show its advantage of zero-shot prompting on multilingual code summarization and text-to-text translation. We will make our code and pre-trained models publicly available.