Abstract:Drones have become essential in various applications, but conventional quadrotors face limitations in confined spaces and complex tasks. Deformable drones, which can adapt their shape in real-time, offer a promising solution to overcome these challenges, while also enhancing maneuverability and enabling novel tasks like object grasping. This paper presents a novel approach to autonomous motion planning and control for deformable quadrotors. We introduce a shape-adaptive trajectory planner that incorporates deformation dynamics into path generation, using a scalable kinodynamic A* search to handle deformation parameters in complex environments. The backend spatio-temporal optimization is capable of generating optimally smooth trajectories that incorporate shape deformation. Additionally, we propose an enhanced control strategy that compensates for external forces and torque disturbances, achieving a 37.3\% reduction in trajectory tracking error compared to our previous work. Our approach is validated through simulations and real-world experiments, demonstrating its effectiveness in narrow-gap traversal and multi-modal deformable tasks.
Abstract:In the process of urban environment mapping, the sequential accumulations of dynamic objects will leave a large number of traces in the map. These traces will usually have bad influences on the localization accuracy and navigation performance of the robot. Therefore, dynamic objects removal plays an important role for creating clean map. However, conventional dynamic objects removal methods usually run offline. That is, the map is reprocessed after it is constructed, which undoubtedly increases additional time costs. To tackle the problem, this paper proposes a novel method for online dynamic objects removal for ground vehicles. According to the observation time difference between the object and the ground where it is located, dynamic objects are classified into two types: suddenly appear and suddenly disappear. For these two kinds of dynamic objects, we propose downward retrieval and upward retrieval methods to eliminate them respectively. We validate our method on SemanticKITTI dataset and author-collected dataset with highly dynamic objects. Compared with other state-of-the-art methods, our method is more efficient and robust, and reduces the running time per frame by more than 60$\%$ on average.