Abstract:Quantum neural networks converge faster and achieve higher accuracy than classical models. However, data augmentation in quantum machine learning remains underexplored. To tackle data scarcity, we integrate quantum generative adversarial networks (QGANs) with hybrid quantum-classical neural networks (HQCNNs) to develop an augmentation framework. We propose two strategies: a general approach to enhance data processing and classification across HQCNNs, and a customized strategy that dynamically generates samples tailored to the HQCNN's performance on specific data categories, improving its ability to learn from complex datasets. Simulation experiments on the MNIST dataset demonstrate that QGAN outperforms traditional data augmentation methods and classical GANs. Compared to baseline DCGAN, QGAN achieves comparable performance with half the parameters, balancing efficiency and effectiveness. This suggests that QGANs can simplify models and generate high-quality data, enhancing HQCNN accuracy and performance. These findings pave the way for applying quantum data augmentation techniques in machine learning.
Abstract:Neural network is a powerful learning paradigm for data feature learning in the era of big data. However, most neural network models are deterministic models that ignore the uncertainty of data. Fuzzy neural networks are proposed to address this problem. FDNN is a hierarchical deep neural network that derives information from both fuzzy and neural representations, the representations are then fused to form representation to be classified. FDNN perform well on uncertain data classification tasks. In this paper, we proposed a novel hierarchical fused quantum fuzzy neural network (HQFNN). Different from classical FDNN, HQFNN uses quantum neural networks to learn fuzzy membership functions in fuzzy neural network. We conducted simulated experiment on two types of datasets (Dirty-MNIST and 15-Scene), the results show that the proposed model can outperform several existing methods. In addition, we demonstrate the robustness of the proposed quantum circuit.