Abstract:Large language models (LLMs) have become increasingly prevalent in our daily lives, leading to an expectation for LLMs to be trustworthy -- - both accurate and well-calibrated (the prediction confidence should align with its ground truth correctness likelihood). Nowadays, fine-tuning has become the most popular method for adapting a model to practical usage by significantly increasing accuracy on downstream tasks. Despite the great accuracy it achieves, we found fine-tuning is still far away from satisfactory trustworthiness due to "tuning-induced mis-calibration". In this paper, we delve deeply into why and how mis-calibration exists in fine-tuned models, and how distillation can alleviate the issue. Then we further propose a brand new method named Efficient Trustworthy Distillation (FIRST), which utilizes a small portion of teacher's knowledge to obtain a reliable language model in a cost-efficient way. Specifically, we identify the "concentrated knowledge" phenomenon during distillation, which can significantly reduce the computational burden. Then we apply a "trustworthy maximization" process to optimize the utilization of this small portion of concentrated knowledge before transferring it to the student. Experimental results demonstrate the effectiveness of our method, where better accuracy (+2.3%) and less mis-calibration (-10%) are achieved on average across both in-domain and out-of-domain scenarios, indicating better trustworthiness.
Abstract:Accurately identifying and organizing textual content is crucial for the automation of document processing in the field of form understanding. Existing datasets, such as FUNSD and XFUND, support entity classification and relationship prediction tasks but are typically limited to local and entity-level annotations. This limitation overlooks the hierarchically structured representation of documents, constraining comprehensive understanding of complex forms. To address this issue, we present the SRFUND, a hierarchically structured multi-task form understanding benchmark. SRFUND provides refined annotations on top of the original FUNSD and XFUND datasets, encompassing five tasks: (1) word to text-line merging, (2) text-line to entity merging, (3) entity category classification, (4) item table localization, and (5) entity-based full-document hierarchical structure recovery. We meticulously supplemented the original dataset with missing annotations at various levels of granularity and added detailed annotations for multi-item table regions within the forms. Additionally, we introduce global hierarchical structure dependencies for entity relation prediction tasks, surpassing traditional local key-value associations. The SRFUND dataset includes eight languages including English, Chinese, Japanese, German, French, Spanish, Italian, and Portuguese, making it a powerful tool for cross-lingual form understanding. Extensive experimental results demonstrate that the SRFUND dataset presents new challenges and significant opportunities in handling diverse layouts and global hierarchical structures of forms, thus providing deep insights into the field of form understanding. The original dataset and implementations of baseline methods are available at https://sprateam-ustc.github.io/SRFUND
Abstract:Image description datasets play a crucial role in the advancement of various applications such as image understanding, text-to-image generation, and text-image retrieval. Currently, image description datasets primarily originate from two sources. One source is the scraping of image-text pairs from the web. Despite their abundance, these descriptions are often of low quality and noisy. Another is through human labeling. Datasets such as COCO are generally very short and lack details. Although detailed image descriptions can be annotated by humans, the high annotation cost limits the feasibility. These limitations underscore the need for more efficient and scalable methods to generate accurate and detailed image descriptions. In this paper, we propose an innovative framework termed Image Textualization (IT), which automatically produces high-quality image descriptions by leveraging existing multi-modal large language models (MLLMs) and multiple vision expert models in a collaborative manner, which maximally convert the visual information into text. To address the current lack of benchmarks for detailed descriptions, we propose several benchmarks for comprehensive evaluation, which verifies the quality of image descriptions created by our framework. Furthermore, we show that LLaVA-7B, benefiting from training on IT-curated descriptions, acquire improved capability to generate richer image descriptions, substantially increasing the length and detail of their output with less hallucination.
Abstract:This paper introduces a novel perspective to significantly mitigate catastrophic forgetting in continuous learning (CL), which emphasizes models' capacity to preserve existing knowledge and assimilate new information. Current replay-based methods treat every task and data sample equally and thus can not fully exploit the potential of the replay buffer. In response, we propose COgnitive REplay (CORE), which draws inspiration from human cognitive review processes. CORE includes two key strategies: Adaptive Quantity Allocation and Quality-Focused Data Selection. The former adaptively modulates the replay buffer allocation for each task based on its forgetting rate, while the latter guarantees the inclusion of representative data that best encapsulates the characteristics of each task within the buffer. Our approach achieves an average accuracy of 37.95% on split-CIFAR10, surpassing the best baseline method by 6.52%. Additionally, it significantly enhances the accuracy of the poorest-performing task by 6.30% compared to the top baseline.
Abstract:Recently, handwritten Chinese character error correction has been greatly improved by employing encoder-decoder methods to decompose a Chinese character into an ideographic description sequence (IDS). However, existing methods implicitly capture and encode linguistic information inherent in IDS sequences, leading to a tendency to generate IDS sequences that match seen characters. This poses a challenge when dealing with an unseen misspelled character, as the decoder may generate an IDS sequence that matches a seen character instead. Therefore, we introduce Count, Decode and Fetch (CDF), a novel approach that exhibits better generalization towards unseen misspelled characters. CDF is mainly composed of three parts: the counter, the decoder, and the fetcher. In the first stage, the counter predicts the number of each radical class without the symbol-level position annotations. In the second stage, the decoder employs the counting information and generates the IDS sequence step by step. Moreover, by updating the counting information at each time step, the decoder becomes aware of the existence of each radical. With the decomposed IDS sequence, we can determine whether the given character is misspelled. If it is misspelled, the fetcher under the transductive transfer learning strategy predicts the ideal character that the user originally intended to write. We integrate our method into existing encoder-decoder models and significantly enhance their performance.
Abstract:The problem of document structure reconstruction refers to converting digital or scanned documents into corresponding semantic structures. Most existing works mainly focus on splitting the boundary of each element in a single document page, neglecting the reconstruction of semantic structure in multi-page documents. This paper introduces hierarchical reconstruction of document structures as a novel task suitable for NLP and CV fields. To better evaluate the system performance on the new task, we built a large-scale dataset named HRDoc, which consists of 2,500 multi-page documents with nearly 2 million semantic units. Every document in HRDoc has line-level annotations including categories and relations obtained from rule-based extractors and human annotators. Moreover, we proposed an encoder-decoder-based hierarchical document structure parsing system (DSPS) to tackle this problem. By adopting a multi-modal bidirectional encoder and a structure-aware GRU decoder with soft-mask operation, the DSPS model surpass the baseline method by a large margin. All scripts and datasets will be made publicly available at https://github.com/jfma-USTC/HRDoc.
Abstract:Table structure recognition is an indispensable element for enabling machines to comprehend tables. Its primary purpose is to identify the internal structure of a table. Nevertheless, due to the complexity and diversity of their structure and style, it is highly challenging to parse the tabular data into a structured format that machines can comprehend. In this work, we adhere to the principle of the split-and-merge based methods and propose an accurate table structure recognizer, termed SEMv2 (SEM: Split, Embed and Merge). Unlike the previous works in the ``split'' stage, we aim to address the table separation line instance-level discrimination problem and introduce a table separation line detection strategy based on conditional convolution. Specifically, we design the ``split'' in a top-down manner that detects the table separation line instance first and then dynamically predicts the table separation line mask for each instance. The final table separation line shape can be accurately obtained by processing the table separation line mask in a row-wise/column-wise manner. To comprehensively evaluate the SEMv2, we also present a more challenging dataset for table structure recognition, dubbed iFLYTAB, which encompasses multiple style tables in various scenarios such as photos, scanned documents, etc. Extensive experiments on publicly available datasets (e.g. SciTSR, PubTabNet and iFLYTAB) demonstrate the efficacy of our proposed approach. The code and iFLYTAB dataset will be made publicly available upon acceptance of this paper.
Abstract:Table of contents (ToC) extraction aims to extract headings of different levels in documents to better understand the outline of the contents, which can be widely used for document understanding and information retrieval. Existing works often use hand-crafted features and predefined rule-based functions to detect headings and resolve the hierarchical relationship between headings. Both the benchmark and research based on deep learning are still limited. Accordingly, in this paper, we first introduce a standard dataset, HierDoc, including image samples from 650 documents of scientific papers with their content labels. Then we propose a novel end-to-end model by using the multimodal tree decoder (MTD) for ToC as a benchmark for HierDoc. The MTD model is mainly composed of three parts, namely encoder, classifier, and decoder. The encoder fuses the multimodality features of vision, text, and layout information for each entity of the document. Then the classifier recognizes and selects the heading entities. Next, to parse the hierarchical relationship between the heading entities, a tree-structured decoder is designed. To evaluate the performance, both the metric of tree-edit-distance similarity (TEDS) and F1-Measure are adopted. Finally, our MTD approach achieves an average TEDS of 87.2% and an average F1-Measure of 88.1% on the test set of HierDoc. The code and dataset will be released at: https://github.com/Pengfei-Hu/MTD.
Abstract:Document intelligence as a relatively new research topic supports many business applications. Its main task is to automatically read, understand, and analyze documents. However, due to the diversity of formats (invoices, reports, forms, etc.) and layouts in documents, it is difficult to make machines understand documents. In this paper, we present the GraphDoc, a multimodal graph attention-based model for various document understanding tasks. GraphDoc is pre-trained in a multimodal framework by utilizing text, layout, and image information simultaneously. In a document, a text block relies heavily on its surrounding contexts, so we inject the graph structure into the attention mechanism to form a graph attention layer so that each input node can only attend to its neighborhoods. The input nodes of each graph attention layer are composed of textual, visual, and positional features from semantically meaningful regions in a document image. We do the multimodal feature fusion of each node by the gate fusion layer. The contextualization between each node is modeled by the graph attention layer. GraphDoc learns a generic representation from only 320k unlabeled documents via the Masked Sentence Modeling task. Extensive experimental results on the publicly available datasets show that GraphDoc achieves state-of-the-art performance, which demonstrates the effectiveness of our proposed method.
Abstract:Table structure recognition is an essential part for making machines understand tables. Its main task is to recognize the internal structure of a table. However, due to the complexity and diversity in their structure and style, it is very difficult to parse the tabular data into the structured format which machines can understand easily, especially for complex tables. In this paper, we introduce Split, Embed and Merge (SEM), an accurate table structure recognizer. Our model takes table images as input and can correctly recognize the structure of tables, whether they are simple or a complex tables. SEM is mainly composed of three parts, splitter, embedder and merger. In the first stage, we apply the splitter to predict the potential regions of the table row (column) separators, and obtain the fine grid structure of the table. In the second stage, by taking a full consideration of the textual information in the table, we fuse the output features for each table grid from both vision and language modalities. Moreover, we achieve a higher precision in our experiments through adding additional semantic features. Finally, we process the merging of these basic table grids in a self-regression manner. The correspondent merging results is learned through the attention mechanism. In our experiments, SEM achieves an average F1-Measure of 97.11% on the SciTSR dataset which outperforms other methods by a large margin. We also won the first place in the complex table and third place in all tables in ICDAR 2021 Competition on Scientific Literature Parsing, Task-B. Extensive experiments on other publicly available datasets demonstrate that our model achieves state-of-the-art.