Abstract:In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2
Abstract:Lifelong prompt tuning has significantly advanced parameter-efficient lifelong learning with its efficiency and minimal storage demands on various tasks. Our empirical studies, however, highlights certain transferability constraints in the current methodologies: a universal algorithm that guarantees consistent positive transfer across all tasks is currently unattainable, especially when dealing dissimilar tasks that may engender negative transfer. Identifying the misalignment between algorithm selection and task specificity as the primary cause of negative transfer, we present the Similarity Heuristic Lifelong Prompt Tuning (SHLPT) framework. This innovative strategy partitions tasks into two distinct subsets by harnessing a learnable similarity metric, thereby facilitating fruitful transfer from tasks regardless of their similarity or dissimilarity. Additionally, SHLPT incorporates a parameter pool to combat catastrophic forgetting effectively. Our experiments shows that SHLPT outperforms state-of-the-art techniques in lifelong learning benchmarks and demonstrates robustness against negative transfer in diverse task sequences.
Abstract:With the rapid development of cloud computing and big data technologies, storage systems have become a fundamental building block of datacenters, incorporating hardware innovations such as flash solid state drives and non-volatile memories, as well as software infrastructures such as RAID and distributed file systems. Despite the growing popularity and interests in storage, designing and implementing reliable storage systems remains challenging, due to their performance instability and prevailing hardware failures. Proactive prediction greatly strengthens the reliability of storage systems. There are two dimensions of prediction: performance and failure. Ideally, through detecting in advance the slow IO requests, and predicting device failures before they really happen, we can build storage systems with especially low tail latency and high availability. While its importance is well recognized, such proactive prediction in storage systems, on the other hand, is particularly difficult. To move towards predictability of storage systems, various mechanisms and field studies have been proposed in the past few years. In this report, we present a survey of these mechanisms and field studies, focusing on machine learning based black-box approaches. Based on three representative research works, we discuss where and how machine learning should be applied in this field. The strengths and limitations of each research work are also evaluated in detail.