Abstract:Multiple Instance Learning is the predominant method for Whole Slide Image classification in digital pathology, enabling the use of slide-level labels to supervise model training. Although MIL eliminates the tedious fine-grained annotation process for supervised learning, whether it can learn accurate bag- and instance-level classifiers remains a question. To address the issue, instance-level classifiers and instance masks were incorporated to ground the prediction on supporting patches. These methods, while practically improving the performance of MIL methods, may potentially introduce noisy labels. We propose to bridge the gap between commonly used MIL and fully supervised learning by augmenting both the bag- and instance-level learning processes with pseudo-label correction capabilities elicited from weak to strong generalization techniques. The proposed algorithm improves the performance of dual-level MIL algorithms on both bag- and instance-level predictions. Experiments on public pathology datasets showcase the advantage of the proposed methods.
Abstract:In real-world datasets, the challenges of long-tailed distributions and noisy labels often coexist, posing obstacles to the model training and performance. Existing studies on long-tailed noisy label learning (LTNLL) typically assume that the generation of noisy labels is independent of the long-tailed distribution, which may not be true from a practical perspective. In real-world situaiton, we observe that the tail class samples are more likely to be mislabeled as head, exacerbating the original degree of imbalance. We call this phenomenon as ``tail-to-head (T2H)'' noise. T2H noise severely degrades model performance by polluting the head classes and forcing the model to learn the tail samples as head. To address this challenge, we investigate the dynamic misleading process of the nosiy labels and propose a novel method called Disentangling and Unlearning for Long-tailed and Label-noisy data (DULL). It first employs the Inner-Feature Disentangling (IFD) to disentangle feature internally. Based on this, the Inner-Feature Partial Unlearning (IFPU) is then applied to weaken and unlearn incorrect feature regions correlated to wrong classes. This method prevents the model from being misled by noisy labels, enhancing the model's robustness against noise. To provide a controlled experimental environment, we further propose a new noise addition algorithm to simulate T2H noise. Extensive experiments on both simulated and real-world datasets demonstrate the effectiveness of our proposed method.