Stanford University
Abstract:Large language model (LLM) alignment relies on complex reward signals that often obscure the specific behaviors being incentivized, creating critical risks of misalignment and reward hacking. Existing interpretation methods typically rely on pre-defined rubrics, risking the omission of "unknown unknowns", or fail to identify objectives that comprehensively cover and are causal to the model behavior. To address these limitations, we introduce Obj-Disco, a framework that automatically decomposes an alignment reward signal into a sparse, weighted combination of human-interpretable natural language objectives. Our approach utilizes an iterative greedy algorithm to analyze behavioral changes across training checkpoints, identifying and validating candidate objectives that best explain the residual reward signal. Extensive evaluations across diverse tasks, model sizes, and alignment algorithms demonstrate the framework's robustness. Experiments with popular open-source reward models show that the framework consistently captures > 90% of reward behavior, a finding further corroborated by human evaluation. Additionally, a case study on alignment with an open-source reward model reveals that Obj-Disco can successfully identify latent misaligned incentives that emerge alongside intended behaviors. Our work provides a crucial tool for uncovering the implicit objectives in LLM alignment, paving the way for more transparent and safer AI development.
Abstract:Large language models (LLMs) often generate plausible yet incorrect answers, posing risks in safety-critical settings such as medicine. Human evaluation is expensive, and LLM-as-judge approaches risk introducing hidden errors. Recent white-box methods detect contextual hallucinations using model internals, focusing on the localization of the attention mass, but two questions remain open: do these approaches extend to predicting answer correctness, and do they generalize out-of-domains? We introduce Head Entropy, a method that predicts answer correctness from attention entropy patterns, specifically measuring the spread of the attention mass. Using sparse logistic regression on per-head 2-Renyi entropies, Head Entropy matches or exceeds baselines in-distribution and generalizes substantially better on out-of-domains, it outperforms the closest baseline on average by +8.5% AUROC. We further show that attention patterns over the question/context alone, before answer generation, already carry predictive signal using Head Entropy with on average +17.7% AUROC over the closest baseline. We evaluate across 5 instruction-tuned LLMs and 3 QA datasets spanning general knowledge, multi-hop reasoning, and medicine.
Abstract:In complex clinical decision-making, clinicians must often track a variety of competing metrics defined by aim (ideal) and limit (strict) thresholds. Sifting through these high-dimensional tradeoffs to infer the optimal patient-specific strategy is cognitively demanding and historically prone to variability. In this paper, we address this challenge within the context of High-Dose-Rate (HDR) brachytherapy for cervical cancer, where planning requires strictly managing radiation hot spots while balancing tumor coverage against organ sparing. We present ALMo (Aim-Limit-defined Multi-Objective system), an interactive decision support system designed to infer and operationalize clinician intent. ALMo employs a novel optimization framework that minimizes manual input through automated parameter setup and enables flexible control over toxicity risks. Crucially, the system allows clinicians to navigate the Pareto surface of dosimetric tradeoffs by directly manipulating intuitive aim and limit values. In a retrospective evaluation of 25 clinical cases, ALMo generated treatment plans that consistently met or exceeded manual planning quality, with 65% of cases demonstrating dosimetric improvements. Furthermore, the system significantly enhanced efficiency, reducing average planning time to approximately 17 minutes, compared to the conventional 30-60 minutes. While validated in brachytherapy, ALMo demonstrates a generalized framework for streamlining interaction in multi-criteria clinical decision-making.
Abstract:Learning from human feedback typically relies on preference optimization that constrains policy updates through token-level regularization. However, preference optimization for language models is particularly challenging because token-space similarity does not imply semantic or behavioral similarity. To address this challenge, we leverage latent-space regularization for language model preference optimization. We introduce GANPO, which achieves latent-space regularization by penalizing divergence between the internal representations of a policy model and a reference model. Given that latent representations are not associated with explicit probability densities, we adopt an adversarial approach inspired by GANs to minimize latent-space divergence. We integrate GANPO as a regularizer into existing offline preference optimization objectives. Experiments across multiple model architectures and tasks show consistent improvements from latent-space regularization. Further, by comparing GANPO-induced inferential biases with those from token-level regularization, we find that GANPO provides more robust structural feedback under distributional shift and noise while maintaining comparable downstream performance with minor computational overhead.
Abstract:Bayesian optimization (BO) is a common framework for optimizing black-box functions, yet most existing methods assume static query costs and rely on myopic acquisition strategies. We introduce LookaHES, a nonmyopic BO framework designed for dynamic, history-dependent cost environments, where evaluation costs vary with prior actions, such as travel distance in spatial tasks or edit distance in sequence design. LookaHES combines a multi-step variant of $H$-Entropy Search with pathwise sampling and neural policy optimization, enabling long-horizon planning beyond twenty steps without the exponential complexity of existing nonmyopic methods. The key innovation is the integration of neural policies, including large language models, to effectively navigate structured, combinatorial action spaces such as protein sequences. These policies amortize lookahead planning and can be integrated with domain-specific constraints during rollout. Empirically, LookaHES outperforms strong myopic and nonmyopic baselines across nine synthetic benchmarks from two to eight dimensions and two real-world tasks: geospatial optimization using NASA night-light imagery and protein sequence design with constrained token-level edits. In short, LookaHES provides a general, scalable, and cost-aware solution for robust long-horizon optimization in complex decision spaces, which makes it a useful tool for researchers in machine learning, statistics, and applied domains. Our implementation is available at https://github.com/sangttruong/nonmyopia.
Abstract:As frontier AI systems are pretrained on web-scale data, test set contamination has become a critical concern for accurately assessing their capabilities. While research has thoroughly investigated the impact of test set contamination on discriminative evaluations like multiple-choice question-answering, comparatively little research has studied the impact of test set contamination on generative evaluations. In this work, we quantitatively assess the effect of test set contamination on generative evaluations through the language model lifecycle. We pretrain language models on mixtures of web data and the MATH benchmark, sweeping model sizes and number of test set replicas contaminating the pretraining corpus; performance improves with contamination and model size. Using scaling laws, we make a surprising discovery: including even a single test set replica enables models to achieve lower loss than the irreducible error of training on the uncontaminated corpus. We then study further training: overtraining with fresh data reduces the effects of contamination, whereas supervised finetuning on the training set can either increase or decrease performance on test data, depending on the amount of pretraining contamination. Finally, at inference, we identify factors that modulate memorization: high sampling temperatures mitigate contamination effects, and longer solutions are exponentially more difficult to memorize than shorter ones, presenting a contrast with discriminative evaluations, where solutions are only a few tokens in length. By characterizing how generation and memorization interact, we highlight a new layer of complexity for trustworthy evaluation of AI systems.
Abstract:Many unresolved legal questions over LLMs and copyright center on memorization: whether specific training data have been encoded in the model's weights during training, and whether those memorized data can be extracted in the model's outputs. While many believe that LLMs do not memorize much of their training data, recent work shows that substantial amounts of copyrighted text can be extracted from open-weight models. However, it remains an open question if similar extraction is feasible for production LLMs, given the safety measures these systems implement. We investigate this question using a two-phase procedure: (1) an initial probe to test for extraction feasibility, which sometimes uses a Best-of-N (BoN) jailbreak, followed by (2) iterative continuation prompts to attempt to extract the book. We evaluate our procedure on four production LLMs -- Claude 3.7 Sonnet, GPT-4.1, Gemini 2.5 Pro, and Grok 3 -- and we measure extraction success with a score computed from a block-based approximation of longest common substring (nv-recall). With different per-LLM experimental configurations, we were able to extract varying amounts of text. For the Phase 1 probe, it was unnecessary to jailbreak Gemini 2.5 Pro and Grok 3 to extract text (e.g, nv-recall of 76.8% and 70.3%, respectively, for Harry Potter and the Sorcerer's Stone), while it was necessary for Claude 3.7 Sonnet and GPT-4.1. In some cases, jailbroken Claude 3.7 Sonnet outputs entire books near-verbatim (e.g., nv-recall=95.8%). GPT-4.1 requires significantly more BoN attempts (e.g., 20X), and eventually refuses to continue (e.g., nv-recall=4.0%). Taken together, our work highlights that, even with model- and system-level safeguards, extraction of (in-copyright) training data remains a risk for production LLMs.
Abstract:We formulate long-context language modeling as a problem in continual learning rather than architecture design. Under this formulation, we only use a standard architecture -- a Transformer with sliding-window attention. However, our model continues learning at test time via next-token prediction on the given context, compressing the context it reads into its weights. In addition, we improve the model's initialization for learning at test time via meta-learning at training time. Overall, our method, a form of Test-Time Training (TTT), is End-to-End (E2E) both at test time (via next-token prediction) and training time (via meta-learning), in contrast to previous forms. We conduct extensive experiments with a focus on scaling properties. In particular, for 3B models trained with 164B tokens, our method (TTT-E2E) scales with context length in the same way as Transformer with full attention, while others, such as Mamba 2 and Gated DeltaNet, do not. However, similar to RNNs, TTT-E2E has constant inference latency regardless of context length, making it 2.7 times faster than full attention for 128K context. Our code is publicly available.
Abstract:Large language models (LLMs) are increasingly deployed in culturally diverse environments, yet existing evaluations of cultural competence remain limited. Existing methods focus on de-contextualized correctness or forced-choice judgments, overlooking the need for cultural understanding and reasoning required for appropriate responses. To address this gap, we introduce a set of benchmarks that, instead of directly probing abstract norms or isolated statements, present models with realistic situational contexts that require culturally grounded reasoning. In addition to the standard Exact Match metric, we introduce four complementary metrics (Coverage, Specificity, Connotation, and Coherence) to capture different dimensions of model's response quality. Empirical analysis across frontier models reveals that thin evaluation systematically overestimates cultural competence and produces unstable assessments with high variance. In contrast, thick evaluation exposes differences in reasoning depth, reduces variance, and provides more stable, interpretable signals of cultural understanding.




Abstract:Foundation models are increasingly central to high-stakes AI systems, and governance frameworks now depend on evaluations to assess their risks and capabilities. Although general capability evaluations are widespread, social impact assessments covering bias, fairness, privacy, environmental costs, and labor practices remain uneven across the AI ecosystem. To characterize this landscape, we conduct the first comprehensive analysis of both first-party and third-party social impact evaluation reporting across a wide range of model developers. Our study examines 186 first-party release reports and 183 post-release evaluation sources, and complements this quantitative analysis with interviews of model developers. We find a clear division of evaluation labor: first-party reporting is sparse, often superficial, and has declined over time in key areas such as environmental impact and bias, while third-party evaluators including academic researchers, nonprofits, and independent organizations provide broader and more rigorous coverage of bias, harmful content, and performance disparities. However, this complementarity has limits. Only model developers can authoritatively report on data provenance, content moderation labor, financial costs, and training infrastructure, yet interviews reveal that these disclosures are often deprioritized unless tied to product adoption or regulatory compliance. Our findings indicate that current evaluation practices leave major gaps in assessing AI's societal impacts, highlighting the urgent need for policies that promote developer transparency, strengthen independent evaluation ecosystems, and create shared infrastructure to aggregate and compare third-party evaluations in a consistent and accessible way.