Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Image To Image Translation": models, code, and papers

Conditional Image-to-Image Translation

May 01, 2018
Jianxin Lin, Yingce Xia, Tao Qin, Zhibo Chen, Tie-Yan Liu

Image-to-image translation tasks have been widely investigated with Generative Adversarial Networks (GANs) and dual learning. However, existing models lack the ability to control the translated results in the target domain and their results usually lack of diversity in the sense that a fixed image usually leads to (almost) deterministic translation result. In this paper, we study a new problem, conditional image-to-image translation, which is to translate an image from the source domain to the target domain conditioned on a given image in the target domain. It requires that the generated image should inherit some domain-specific features of the conditional image from the target domain. Therefore, changing the conditional image in the target domain will lead to diverse translation results for a fixed input image from the source domain, and therefore the conditional input image helps to control the translation results. We tackle this problem with unpaired data based on GANs and dual learning. We twist two conditional translation models (one translation from A domain to B domain, and the other one from B domain to A domain) together for inputs combination and reconstruction while preserving domain independent features. We carry out experiments on men's faces from-to women's faces translation and edges to shoes&bags translations. The results demonstrate the effectiveness of our proposed method.

* 9 pages, 9 figures, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 

A Novel Framework for Image-to-image Translation and Image Compression

Nov 25, 2021
Fei Yang, Yaxing Wang, Luis Herranz, Yongmei Cheng, Mikhail Mozerov

Data-driven paradigms using machine learning are becoming ubiquitous in image processing and communications. In particular, image-to-image (I2I) translation is a generic and widely used approach to image processing problems, such as image synthesis, style transfer, and image restoration. At the same time, neural image compression has emerged as a data-driven alternative to traditional coding approaches in visual communications. In this paper, we study the combination of these two paradigms into a joint I2I compression and translation framework, focusing on multi-domain image synthesis. We first propose distributed I2I translation by integrating quantization and entropy coding into an I2I translation framework (i.e. I2Icodec). In practice, the image compression functionality (i.e. autoencoding) is also desirable, requiring to deploy alongside I2Icodec a regular image codec. Thus, we further propose a unified framework that allows both translation and autoencoding capabilities in a single codec. Adaptive residual blocks conditioned on the translation/compression mode provide flexible adaptation to the desired functionality. The experiments show promising results in both I2I translation and image compression using a single model.


Multi-Curve Translator for Real-Time High-Resolution Image-to-Image Translation

Mar 15, 2022
Yuda Song, Hui Qian, Xin Du

The dominant image-to-image translation methods are based on fully convolutional networks, which extract and translate an image's features and then reconstruct the image. However, they have unacceptable computational costs when working with high-resolution images. To this end, we present the Multi-Curve Translator (MCT), which not only predicts the translated pixels for the corresponding input pixels but also for their neighboring pixels. And if a high-resolution image is downsampled to its low-resolution version, the lost pixels are the remaining pixels' neighboring pixels. So MCT makes it possible to feed the network only the downsampled image to perform the mapping for the full-resolution image, which can dramatically lower the computational cost. Besides, MCT is a plug-in approach that utilizes existing base models and requires only replacing their output layers. Experiments demonstrate that the MCT variants can process 4K images in real-time and achieve comparable or even better performance than the base models on various image-to-image translation tasks.


Semi-Supervised Image-to-Image Translation

Jan 24, 2019
Manan Oza, Himanshu Vaghela, Sudhir Bagul

Image-to-image translation is a long-established and a difficult problem in computer vision. In this paper we propose an adversarial based model for image-to-image translation. The regular deep neural-network based methods perform the task of image-to-image translation by comparing gram matrices and using image segmentation which requires human intervention. Our generative adversarial network based model works on a conditional probability approach. This approach makes the image translation independent of any local, global and content or style features. In our approach we use a bidirectional reconstruction model appended with the affine transform factor that helps in conserving the content and photorealism as compared to other models. The advantage of using such an approach is that the image-to-image translation is semi-supervised, independant of image segmentation and inherits the properties of generative adversarial networks tending to produce realistic. This method has proven to produce better results than Multimodal Unsupervised Image-to-image translation.


Vector Quantized Image-to-Image Translation

Jul 27, 2022
Yu-Jie Chen, Shin-I Cheng, Wei-Chen Chiu, Hung-Yu Tseng, Hsin-Ying Lee

Current image-to-image translation methods formulate the task with conditional generation models, leading to learning only the recolorization or regional changes as being constrained by the rich structural information provided by the conditional contexts. In this work, we propose introducing the vector quantization technique into the image-to-image translation framework. The vector quantized content representation can facilitate not only the translation, but also the unconditional distribution shared among different domains. Meanwhile, along with the disentangled style representation, the proposed method further enables the capability of image extension with flexibility in both intra- and inter-domains. Qualitative and quantitative experiments demonstrate that our framework achieves comparable performance to the state-of-the-art image-to-image translation and image extension methods. Compared to methods for individual tasks, the proposed method, as a unified framework, unleashes applications combining image-to-image translation, unconditional generation, and image extension altogether. For example, it provides style variability for image generation and extension, and equips image-to-image translation with further extension capabilities.


Unsupervised Image-to-Image Translation Networks

Jul 23, 2018
Ming-Yu Liu, Thomas Breuel, Jan Kautz

Unsupervised image-to-image translation aims at learning a joint distribution of images in different domains by using images from the marginal distributions in individual domains. Since there exists an infinite set of joint distributions that can arrive the given marginal distributions, one could infer nothing about the joint distribution from the marginal distributions without additional assumptions. To address the problem, we make a shared-latent space assumption and propose an unsupervised image-to-image translation framework based on Coupled GANs. We compare the proposed framework with competing approaches and present high quality image translation results on various challenging unsupervised image translation tasks, including street scene image translation, animal image translation, and face image translation. We also apply the proposed framework to domain adaptation and achieve state-of-the-art performance on benchmark datasets. Code and additional results are available in .

* NIPS 2017, 11 pages, 6 figures 

Retrieval Guided Unsupervised Multi-domain Image-to-Image Translation

Aug 11, 2020
Raul Gomez, Yahui Liu, Marco De Nadai, Dimosthenis Karatzas, Bruno Lepri, Nicu Sebe

Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.

* Submitted to ACM MM '20, October 12-16, 2020, Seattle, WA, USA 

Pretraining is All You Need for Image-to-Image Translation

May 25, 2022
Tengfei Wang, Ting Zhang, Bo Zhang, Hao Ouyang, Dong Chen, Qifeng Chen, Fang Wen

We propose to use pretraining to boost general image-to-image translation. Prior image-to-image translation methods usually need dedicated architectural design and train individual translation models from scratch, struggling for high-quality generation of complex scenes, especially when paired training data are not abundant. In this paper, we regard each image-to-image translation problem as a downstream task and introduce a simple and generic framework that adapts a pretrained diffusion model to accommodate various kinds of image-to-image translation. We also propose adversarial training to enhance the texture synthesis in the diffusion model training, in conjunction with normalized guidance sampling to improve the generation quality. We present extensive empirical comparison across various tasks on challenging benchmarks such as ADE20K, COCO-Stuff, and DIODE, showing the proposed pretraining-based image-to-image translation (PITI) is capable of synthesizing images of unprecedented realism and faithfulness.

* Project Page: 

Show, Attend and Translate: Unpaired Multi-Domain Image-to-Image Translation with Visual Attention

Nov 19, 2018
Honglun Zhang, Wenqing Chen, Jidong Tian, Yongkun Wang, Yaohui Jin

Recently unpaired multi-domain image-to-image translation has attracted great interests and obtained remarkable progress, where a label vector is utilized to indicate multi-domain information. In this paper, we propose SAT (Show, Attend and Translate), an unified and explainable generative adversarial network equipped with visual attention that can perform unpaired image-to-image translation for multiple domains. By introducing an action vector, we treat the original translation tasks as problems of arithmetic addition and subtraction. Visual attention is applied to guarantee that only the regions relevant to the target domains are translated. Extensive experiments on a facial attribute dataset demonstrate the superiority of our approach and the generated attention masks better explain what SAT attends when translating images.


Unpaired Image-to-Image Translation using Adversarial Consistency Loss

Mar 10, 2020
Yihao Zhao, Ruihai Wu, Hao Dong

Unpaired image-to-image translation is a class of vision problems whose goal is to find the mapping between different image domains using unpaired training data. Cycle-consistency loss is a widely used constraint for such problems. However, due to the strict pixel-level constraint, it cannot perform geometric changes, remove large objects, or ignore irrelevant texture. In this paper, we propose a novel adversarial-consistency loss for image-to-image translation. This loss does not require the translated image to be translated back to be a specific source image but can encourage the translated images to retain important features of the source images and overcome the drawbacks of cycle-consistency loss noted above. Our method achieves state-of-the-art results on three challenging tasks: glasses removal, male-to-female translation, and selfie-to-anime translation.