Abstract:Reliable learning on low-quality multimodal data is a widely concerning issue, especially in safety-critical applications. However, multimodal noise poses a major challenge in this domain and leads existing methods to suffer from two key limitations. First, they struggle to reliably remove heterogeneous data noise, hindering robust multimodal representation learning. Second, they exhibit limited adaptability and generalization when encountering previously unseen noise. To address these issues, we propose Test-time Adaptive Hierarchical Co-enhanced Denoising Network (TAHCD). On one hand, TAHCD introduces the Adaptive Stable Subspace Alignment and Sample-Adaptive Confidence Alignment to reliably remove heterogeneous noise. They account for noise at both global and instance levels and enable jointly removal of modality-specific and cross-modality noise, achieving robust learning. On the other hand, TAHCD introduces test-time cooperative enhancement, which adaptively updates the model in response to input noise in a label-free manner, improving adaptability and generalization. This is achieved by collaboratively enhancing the joint removal process of modality-specific and cross-modality noise across global and instance levels according to sample noise. Experiments on multiple benchmarks demonstrate that the proposed method achieves superior classification performance, robustness, and generalization compared with state-of-the-art reliable multimodal learning approaches.




Abstract:Music Emotion Recogniser (MER) research faces challenges due to limited high-quality annotated datasets and difficulties in addressing cross-track feature drift. This work presents two primary contributions to address these issues. Memo2496, a large-scale dataset, offers 2496 instrumental music tracks with continuous valence arousal labels, annotated by 30 certified music specialists. Annotation quality is ensured through calibration with extreme emotion exemplars and a consistency threshold of 0.25, measured by Euclidean distance in the valence arousal space. Furthermore, the Dual-view Adaptive Music Emotion Recogniser (DAMER) is introduced. DAMER integrates three synergistic modules: Dual Stream Attention Fusion (DSAF) facilitates token-level bidirectional interaction between Mel spectrograms and cochleagrams via cross attention mechanisms; Progressive Confidence Labelling (PCL) generates reliable pseudo labels employing curriculum-based temperature scheduling and consistency quantification using Jensen Shannon divergence; and Style Anchored Memory Learning (SAML) maintains a contrastive memory queue to mitigate cross-track feature drift. Extensive experiments on the Memo2496, 1000songs, and PMEmo datasets demonstrate DAMER's state-of-the-art performance, improving arousal dimension accuracy by 3.43%, 2.25%, and 0.17%, respectively. Ablation studies and visualisation analyses validate each module's contribution. Both the dataset and source code are publicly available.
Abstract:Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are available at: https://emorzz1g.github.io/PathFinder/.
Abstract:Although deep learning has advanced remote sensing change detection (RSCD), most methods rely solely on image modality, limiting feature representation, change pattern modeling, and generalization especially under illumination and noise disturbances. To address this, we propose MMChange, a multimodal RSCD method that combines image and text modalities to enhance accuracy and robustness. An Image Feature Refinement (IFR) module is introduced to highlight key regions and suppress environmental noise. To overcome the semantic limitations of image features, we employ a vision language model (VLM) to generate semantic descriptions of bitemporal images. A Textual Difference Enhancement (TDE) module then captures fine grained semantic shifts, guiding the model toward meaningful changes. To bridge the heterogeneity between modalities, we design an Image Text Feature Fusion (ITFF) module that enables deep cross modal integration. Extensive experiments on LEVIRCD, WHUCD, and SYSUCD demonstrate that MMChange consistently surpasses state of the art methods across multiple metrics, validating its effectiveness for multimodal RSCD. Code is available at: https://github.com/yikuizhai/MMChange.
Abstract:Multimodal learning has significantly enhanced machine learning performance but still faces numerous challenges and limitations. Imbalanced multimodal learning is one of the problems extensively studied in recent works and is typically mitigated by modulating the learning of each modality. However, we find that these methods typically hinder the dominant modality's learning to promote weaker modalities, which affects overall multimodal performance. We analyze the cause of this issue and highlight a commonly overlooked problem: optimization bias within networks. To address this, we propose Adaptive Intra-Network Modulation (AIM) to improve balanced modality learning. AIM accounts for differences in optimization state across parameters and depths within the network during modulation, achieving balanced multimodal learning without hindering either dominant or weak modalities for the first time. Specifically, AIM decouples the dominant modality's under-optimized parameters into Auxiliary Blocks and encourages reliance on these performance-degraded blocks for joint training with weaker modalities. This approach effectively prevents suppression of weaker modalities while enabling targeted optimization of under-optimized parameters to improve the dominant modality. Additionally, AIM assesses modality imbalance level across network depths and adaptively adjusts modulation strength at each depth. Experimental results demonstrate that AIM outperforms state-of-the-art imbalanced modality learning methods across multiple benchmarks and exhibits strong generalizability across different backbones, fusion strategies, and optimizers.
Abstract:Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management. Despite the remarkable progress of deep learning in recent years, most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions. We observe that frequency-domain feature modeling particularly in the wavelet domain an amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain. Thus, we propose a method called Wavelet-Guided Dual-Frequency Encoding (WGDF). Specifically, we first apply Discrete Wavelet Transform (DWT) to decompose the input images into high-frequency and low-frequency components, which are used to model local details and global structures, respectively. In the high-frequency branch, we design a Dual-Frequency Feature Enhancement (DFFE) module to strengthen edge detail representation and introduce a Frequency-Domain Interactive Difference (FDID) module to enhance the modeling of fine-grained changes. In the low-frequency branch, we exploit Transformers to capture global semantic relationships and employ a Progressive Contextual Difference Module (PCDM) to progressively refine change regions, enabling precise structural semantic characterization. Finally, the high- and low-frequency features are synergistically fused to unify local sensitivity with global discriminability. Extensive experiments on multiple remote sensing datasets demonstrate that WGDF significantly alleviates edge ambiguity and achieves superior detection accuracy and robustness compared to state-of-the-art methods. The code will be available at https://github.com/boshizhang123/WGDF.




Abstract:Document shadow removal is a crucial task in the field of document image enhancement. However, existing methods tend to remove shadows with constant color background and ignore color shadows. In this paper, we first design a diffusion model in latent space for document image shadow removal, called DocShaDiffusion. It translates shadow images from pixel space to latent space, enabling the model to more easily capture essential features. To address the issue of color shadows, we design a shadow soft-mask generation module (SSGM). It is able to produce accurate shadow mask and add noise into shadow regions specially. Guided by the shadow mask, a shadow mask-aware guided diffusion module (SMGDM) is proposed to remove shadows from document images by supervising the diffusion and denoising process. We also propose a shadow-robust perceptual feature loss to preserve details and structures in document images. Moreover, we develop a large-scale synthetic document color shadow removal dataset (SDCSRD). It simulates the distribution of realistic color shadows and provides powerful supports for the training of models. Experiments on three public datasets validate the proposed method's superiority over state-of-the-art. Our code and dataset will be publicly available.




Abstract:The widespread deployment of InfRared Small-Target Detection(IRSTD) algorithms on edge devices necessitates the exploration of model compression techniques. Binary neural networks (BNNs) are distinguished by their exceptional efficiency in model compression. However, the small size of infrared targets introduces stringent precision requirements for the IRSTD task, while the inherent precision loss during binarization presents a significant challenge. To address this, we propose the Binarized Infrared Small-Target Detection Network (BiisNet), which preserves the core operations of binarized convolutions while integrating full-precision features into the network's information flow. Specifically, we propose the Dot-Binary Convolution, which retains fine-grained semantic information in feature maps while still leveraging the binarized convolution operations. In addition, we introduce a smooth and adaptive Dynamic Softsign function, which provides more comprehensive and progressively finer gradient during back-propagation, enhancing model stability and promoting an optimal weight distribution.Experimental results demonstrate that BiisNet not only significantly outperforms other binary architectures but also demonstrates strong competitiveness among state-of-the-art full-precision models.
Abstract:Semi-supervised semantic segmentation has witnessed remarkable advancements in recent years. However, existing algorithms are based on convolutional neural networks and directly applying them to Vision Transformers poses certain limitations due to conceptual disparities. To this end, we propose TokenMix, a data augmentation technique specifically designed for semi-supervised semantic segmentation with Vision Transformers. TokenMix aligns well with the global attention mechanism by mixing images at the token level, enhancing learning capability for contexutual information among image patches. We further incorporate image augmentation and feature augmentation to promote the diversity of augmentation. Moreover, to enhance consistency regularization, we propose a dual-branch framework where each branch applies both image augmentation and feature augmentation to the input image. We conduct extensive experiments across multiple benchmark datasets, including Pascal VOC 2012, Cityscapes, and COCO. Results suggest that the proposed method outperforms state-of-the-art algorithms with notably observed accuracy improvement, especially under the circumstance of limited fine annotations.
Abstract:Reliable multimodal learning in the presence of noisy data is a widely concerned issue, especially in safety-critical applications. Many reliable multimodal methods delve into addressing modality-specific or cross-modality noise. However, they fail to handle the coexistence of both types of noise efficiently. Moreover, the lack of comprehensive consideration for noise at both global and individual levels limits their reliability. To address these issues, a reliable multimodal classification method dubbed Multi-Level Inter-Class Confusing Information Removal Network (MICINet) is proposed. MICINet achieves the reliable removal of both types of noise by unifying them into the concept of Inter-class Confusing Information (\textit{ICI}) and eliminating it at both global and individual levels. Specifically, MICINet first reliably learns the global \textit{ICI} distribution through the proposed \textbf{\textit{Global \textbf{ICI} Learning Module}}. Then, it introduces the \textbf{\textit{Global-guided Sample ICI Learning module}} to efficiently remove global-level \textit{ICI} from sample features utilizing the learned global \textit{ICI} distribution. Subsequently, the \textbf{\textit{Sample-adaptive Cross-modality Information Compensation module}} is designed to remove individual-level \textit{ICI} from each sample reliably. This is achieved through interpretable cross-modality information compensation based on the complementary relationship between discriminative features and \textit{ICI} and the perception of the relative quality of modalities introduced by the relative discriminative power. Experiments on four datasets demonstrate that MICINet outperforms other state-of-the-art reliable multimodal classification methods under various noise conditions.