Abstract:Traditional target tracking pipelines including detection, mapping, navigation, and control are comprehensive but introduce high latency, limitting the agility of quadrotors. On the contrary, we follow the design principle of "less is more", striving to simplify the process while maintaining effectiveness. In this work, we propose an end-to-end agile tracking and navigation framework for quadrotors that directly maps the sensory observations to control commands. Importantly, leveraging the multimodal nature of navigation and detection tasks, our network maintains interpretability by explicitly integrating the independent modules of the traditional pipeline, rather than a crude action regression. In detail, we adopt a set of motion primitives as anchors to cover the searching space regarding the feasible region and potential target. Then we reformulate the trajectory optimization as regression of primitive offsets and associated costs considering the safety, smoothness, and other metrics. For tracking task, the trajectories are expected to approach the target and additional objectness scores are predicted. Subsequently, the predictions, after compensation for the estimated lumped disturbance, are transformed into thrust and attitude as control commands for swift response. During training, we seamlessly integrate traditional motion planning with deep learning by directly back-propagating the gradients of trajectory costs to the network, eliminating the need for expert demonstration in imitation learning and providing more direct guidance than reinforcement learning. Finally, we deploy the algorithm on a compact quadrotor and conduct real-world validations in both forest and building environments to demonstrate the efficiency of the proposed method.
Abstract:In recent years, infrastructure-based localization methods have achieved significant progress thanks to their reliable and drift-free localization capability. However, the pre-installed infrastructures suffer from inflexibilities and high maintenance costs. This poses an interesting problem of how to develop a drift-free localization system without using the pre-installed infrastructures. In this paper, an infrastructure-free and drift-free localization system is proposed using the ambient magnetic field (MF) information, namely IDF-MFL. IDF-MFL is infrastructure-free thanks to the high distinctiveness of the ambient MF information produced by inherent ferromagnetic objects in the environment, such as steel and reinforced concrete structures of buildings, and underground pipelines. The MF-based localization problem is defined as a stochastic optimization problem with the consideration of the non-Gaussian heavy-tailed noise introduced by MF measurement outliers (caused by dynamic ferromagnetic objects), and an outlier-robust state estimation algorithm is derived to find the optimal distribution of robot state that makes the expectation of MF matching cost achieves its lower bound. The proposed method is evaluated in multiple scenarios, including experiments on high-fidelity simulation, and real-world environments. The results demonstrate that the proposed method can achieve high-accuracy, reliable, and real-time localization without any pre-installed infrastructures.
Abstract:In recent years, LiDAR-based localization and mapping methods have achieved significant progress thanks to their reliable and real-time localization capability. Considering single LiDAR odometry often faces hardware failures and degradation in practical scenarios, Multi-LiDAR Odometry (MLO), as an emerging technology, is studied to enhance the performance of LiDAR-based localization and mapping systems. However, MLO can suffer from high computational complexity introduced by dense point clouds that are fused from multiple LiDARs, and the continuous-time measurement characteristic is constantly neglected by existing LiDAR odometry. This motivates us to develop a Continuous-Time and Efficient MLO, namely CTE-MLO, which can achieve accurate and real-time state estimation using multi-LiDAR measurements through a continuous-time perspective. In this paper, the Gaussian process estimation is naturally combined with the Kalman filter, which enables each LiDAR point in a point stream to query the corresponding continuous-time trajectory within its time instants. A decentralized multi-LiDAR synchronization scheme also be devised to combine points from separate LiDARs into a single point cloud without the requirement for primary LiDAR assignment. Moreover, with the aim of improving the real-time performance of MLO without sacrificing robustness, a point cloud sampling strategy is designed with the consideration of localizability. The effectiveness of the proposed method is demonstrated through various scenarios, including public datasets and real-world autonomous driving experiments. The results demonstrate that the proposed CTE-MLO can achieve high-accuracy continuous-time state estimations in real-time and is demonstratively competitive compared to other state-of-the-art methods.