Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Dense retrieval has become the industry standard in large-scale information retrieval systems due to its high efficiency and competitive accuracy. Its core relies on a coarse-to-fine hierarchical architecture that enables rapid candidate selection and precise semantic matching, achieving millisecond-level response over billion-scale corpora. This capability makes it essential not only in traditional search and recommendation scenarios but also in the emerging paradigm of generative recommendation driven by large language models, where semantic IDs-themselves a form of coarse-to-fine representation-play a foundational role. However, the widely adopted dual-tower encoding architecture introduces inherent challenges, primarily representational space misalignment and retrieval index inconsistency, which degrade matching accuracy, retrieval stability, and performance on long-tail queries. These issues are further magnified in semantic ID generation, ultimately limiting the performance ceiling of downstream generative models. To address these challenges, this paper proposes a simple and effective framework named SCI comprising two synergistic modules: a symmetric representation alignment module that employs an innovative input-swapping mechanism to unify the dual-tower representation space without adding parameters, and an consistent indexing with dual-tower synergy module that redesigns retrieval paths using a dual-view indexing strategy to maintain consistency from training to inference. The framework is systematic, lightweight, and engineering-friendly, requiring minimal overhead while fully supporting billion-scale deployment. We provide theoretical guarantees for our approach, with its effectiveness validated by results across public datasets and real-world e-commerce datasets.
Recommender systems usually rely on large-scale interaction data to learn from users' past behaviors and make accurate predictions. However, real-world applications often face situations where no training data is available, such as when launching new services or handling entirely new users. In such cases, conventional approaches cannot be applied. This study focuses on training-free recommendation, where no task-specific training is performed, and particularly on \textit{training-free cold-start recommendation} (TFCSR), the more challenging case where the target user has no interactions. Large language models (LLMs) have recently been explored as a promising solution, and numerous studies have been proposed. As the ability of text embedding models (TEMs) increases, they are increasingly recognized as applicable to training-free recommendation, but no prior work has directly compared LLMs and TEMs under identical conditions. We present the first controlled experiments that systematically evaluate these two approaches in the same setting. The results show that TEMs outperform LLM rerankers, and this trend holds not only in cold-start settings but also in warm-start settings with rich interactions. These findings indicate that direct LLM ranking is not the only viable option, contrary to the commonly shared belief, and TEM-based approaches provide a stronger and more scalable basis for training-free recommendation.
With the advent of large language models (LLMs), the landscape of recommender systems is undergoing a significant transformation. Traditionally, user reviews have served as a critical source of rich, contextual information for enhancing recommendation quality. However, as LLMs demonstrate an unprecedented ability to understand and generate human-like text, this raises the question of whether explicit user reviews remain essential in the era of LLMs. In this paper, we provide a systematic investigation of the evolving role of text reviews in recommendation by comparing deep learning methods and LLM approaches. Particularly, we conduct extensive experiments on eight public datasets with LLMs and evaluate their performance in zero-shot, few-shot, and fine-tuning scenarios. We further introduce a benchmarking evaluation framework for review-aware recommender systems, RAREval, to comprehensively assess the contribution of textual reviews to the recommendation performance of review-aware recommender systems. Our framework examines various scenarios, including the removal of some or all textual reviews, random distortion, as well as recommendation performance in data sparsity and cold-start user settings. Our findings demonstrate that LLMs are capable of functioning as effective review-aware recommendation engines, generally outperforming traditional deep learning approaches, particularly in scenarios characterized by data sparsity and cold-start conditions. In addition, the removal of some or all textual reviews and random distortion does not necessarily lead to declines in recommendation accuracy. These findings motivate a rethinking of how user preference from text reviews can be more effectively leveraged. All code and supplementary materials are available at: https://github.com/zhytk/RAREval-data-processing.
The status quo for labeling text is third-party annotation, but there are many cases where information directly from the document's source would be preferable over a third-person proxy, especially for egocentric features like sentiment and belief. We introduce author labeling, an annotation technique where the writer of the document itself annotates the data at the moment of creation. We collaborate with a commercial chatbot with over 10,000 users to deploy an author labeling annotation system for subjective features related to product recommendation. This system identifies task-relevant queries, generates on-the-fly labeling questions, and records authors' answers in real time. We train and deploy an online-learning model architecture for product recommendation that continuously improves from author labeling and find it achieved a 534% increase in click-through rate compared to an industry advertising baseline running concurrently. We then compare the quality and practicality of author labeling to three traditional annotation approaches for sentiment analysis and find author labeling to be higher quality, faster to acquire, and cheaper. These findings reinforce existing literature that annotations, especially for egocentric and subjective beliefs, are significantly higher quality when labeled by the author rather than a third party. To facilitate broader scientific adoption, we release an author labeling service for the research community at academic.echollm.io.
Linear Autoencoders (LAEs) have shown strong performance in state-of-the-art recommender systems. However, this success remains largely empirical, with limited theoretical understanding. In this paper, we investigate the generalizability -- a theoretical measure of model performance in statistical learning -- of multivariate linear regression and LAEs. We first propose a PAC-Bayes bound for multivariate linear regression, extending the earlier bound for single-output linear regression by Shalaeva et al., and establish sufficient conditions for its convergence. We then show that LAEs, when evaluated under a relaxed mean squared error, can be interpreted as constrained multivariate linear regression models on bounded data, to which our bound adapts. Furthermore, we develop theoretical methods to improve the computational efficiency of optimizing the LAE bound, enabling its practical evaluation on large models and real-world datasets. Experimental results demonstrate that our bound is tight and correlates well with practical ranking metrics such as Recall@K and NDCG@K.
The rapidly evolving landscape of products, surfaces, policies, and regulations poses significant challenges for deploying state-of-the-art recommendation models at industry scale, primarily due to data fragmentation across domains and escalating infrastructure costs that hinder sustained quality improvements. To address this challenge, we propose Lattice, a recommendation framework centered around model space redesign that extends Multi-Domain, Multi-Objective (MDMO) learning beyond models and learning objectives. Lattice addresses these challenges through a comprehensive model space redesign that combines cross-domain knowledge sharing, data consolidation, model unification, distillation, and system optimizations to achieve significant improvements in both quality and cost-efficiency. Our deployment of Lattice at Meta has resulted in 10% revenue-driving top-line metrics gain, 11.5% user satisfaction improvement, 6% boost in conversion rate, with 20% capacity saving.
Recommendation systems face challenges in dynamically adapting to evolving user preferences and interactions within complex social networks. Traditional approaches often fail to account for the intricate interactions within cyber-social systems and lack the flexibility to generalize across diverse domains, highlighting the need for more adaptive and versatile solutions. In this work, we introduce a general-purpose swarm intelligence algorithm for recommendation systems, designed to adapt seamlessly to varying applications. It was inspired by social psychology principles. The framework models user preferences and community influences within a dynamic hypergraph structure. It leverages centrality-based feature extraction and Node2Vec embeddings. Preference evolution is guided by message-passing mechanisms and hierarchical graph modeling, enabling real-time adaptation to changing behaviors. Experimental evaluations demonstrated the algorithm's superior performance in various recommendation tasks, including social networks and content discovery. Key metrics such as Hit Rate (HR), Mean Reciprocal Rank (MRR), and Normalized Discounted Cumulative Gain (NDCG) consistently outperformed baseline methods across multiple datasets. The model's adaptability to dynamic environments allowed for contextually relevant and precise recommendations. The proposed algorithm represents an advancement in recommendation systems by bridging individual preferences and community influences. Its general-purpose design enables applications in diverse domains, including social graphs, personalized learning, and medical graphs. This work highlights the potential of integrating swarm intelligence with network dynamics to address complex optimization challenges in recommendation systems.
Sequential recommendation aims to model users' evolving preferences based on their historical interactions. Recent advances leverage Transformer-based architectures to capture global dependencies, but existing methods often suffer from high computational overhead, primarily due to discontinuous memory access in temporal encoding and dense attention over long sequences. To address these limitations, we propose FuXi-$γ$, a novel sequential recommendation framework that improves both effectiveness and efficiency through principled architectural design. FuXi-$γ$ adopts a decoder-only Transformer structure and introduces two key innovations: (1) An exponential-power temporal encoder that encodes relative temporal intervals using a tunable exponential decay function inspired by the Ebbinghaus forgetting curve. This encoder enables flexible modeling of both short-term and long-term preferences while maintaining high efficiency through continuous memory access and pure matrix operations. (2) A diagonal-sparse positional mechanism that prunes low-contribution attention blocks using a diagonal-sliding strategy guided by the persymmetry of Toeplitz matrix. Extensive experiments on four real-world datasets demonstrate that FuXi-$γ$ achieves state-of-the-art performance in recommendation quality, while accelerating training by up to 4.74$\times$ and inference by up to 6.18$\times$, making it a practical and scalable solution for long-sequence recommendation. Our code is available at https://github.com/Yeedzhi/FuXi-gamma.
Large Language Models (LLMs) are increasingly deployed in business-critical domains such as finance, education, healthcare, and customer support, where users expect consistent and reliable recommendations. Yet LLMs often exhibit variability when prompts are phrased with minor differences, even when semantically equivalent. Such inconsistency undermines trust, complicates compliance, and disrupts user experience. While personalization is desirable in certain contexts, many enterprise scenarios-such as HR onboarding, customer support, or policy disclosure-require invariant information delivery regardless of phrasing or prior conversational history. Existing approaches, including retrieval-augmented generation (RAG) and temperature tuning, improve factuality or reduce stochasticity but cannot guarantee stability across equivalent prompts. In this paper, we propose a reinforcement learning framework based on Group Relative Policy Optimization (GRPO) to directly optimize for consistency. Unlike prior applications of GRPO, which have been limited to reasoning and code generation, we adapt GRPO to enforce stability of information content across groups of semantically equivalent prompts. We introduce entropy-based helpfulness and stability rewards, treating prompt variants as groups and resetting conversational context to isolate phrasing effects. Experiments on investment and job recommendation tasks show that our GRPO-trained model reduces variability more effectively than fine-tuning or decoding-based baselines. To our knowledge, this is a novel application of GRPO for aligning LLMs toward information consistency, reframing variability not as an acceptable feature of generative diversity but as a correctable flaw in enterprise deployments.
Artificial Intelligence Generated Content (AIGC) assisting image production triggers controversy in journalism while attracting attention from media agencies. Key issues involve misinformation, authenticity, semantic fidelity, and interpretability. Most AIGC tools are opaque "black boxes," hindering the dual demands of content accuracy and semantic alignment and creating ethical, sociotechnical, and trust dilemmas. This paper explores pathways for controllable image production in journalism's special coverage and conducts two experiments with projects from China's media agency: (1) Experiment 1 tests cross-platform adaptability via standardized prompts across three scenes, revealing disparities in semantic alignment, cultural specificity, and visual realism driven by training-corpus bias and platform-level filtering. (2) Experiment 2 builds a human-in-the-loop modular pipeline combining high-precision segmentation (SAM, GroundingDINO), semantic alignment (BrushNet), and style regulating (Style-LoRA, Prompt-to-Prompt), ensuring editorial fidelity through CLIP-based semantic scoring, NSFW/OCR/YOLO filtering, and verifiable content credentials. Traceable deployment preserves semantic representation. Consequently, we propose a human-AI collaboration mechanism for AIGC assisted image production in special coverage and recommend evaluating Character Identity Stability (CIS), Cultural Expression Accuracy (CEA), and User-Public Appropriateness (U-PA).