Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
A core research question in recommender systems is to propose batches of highly relevant and diverse items, that is, items personalized to the user's preferences, but which also might get the user out of their comfort zone. This diversity might induce properties of serendipidity and novelty which might increase user engagement or revenue. However, many real-life problems arise in that case: e.g., avoiding to recommend distinct but too similar items to reduce the churn risk, and computational cost for large item libraries, up to millions of items. First, we consider the case when the user feedback model is perfectly observed and known in advance, and introduce an efficient algorithm called B-DivRec combining determinantal point processes and a fuzzy denuding procedure to adjust the degree of item diversity. This helps enforcing a quality-diversity trade-off throughout the user history. Second, we propose an approach to adaptively tailor the quality-diversity trade-off to the user, so that diversity in recommendations can be enhanced if it leads to positive feedback, and vice-versa. Finally, we illustrate the performance and versatility of B-DivRec in the two settings on synthetic and real-life data sets on movie recommendation and drug repurposing.
Studies on recommendations in social media have mainly analyzed the quality of recommended items (e.g., their diversity or biases) and the impact of recommendation policies (e.g., in comparison with purely chronological policies). We use a data donation program, collecting more than 2.5 million friend recommendations made to 682 volunteers on X over a year, to study instead how real-world recommenders learn, represent and process political and social attributes of users inside the so-called black boxes of AI systems. Using publicly available knowledge on the architecture of the recommender, we inferred the positions of recommended users in its embedding space. Leveraging ideology scaling calibrated with political survey data, we analyzed the political position of users in our study (N=26,509 among volunteers and recommended contacts) among several attributes, including age and gender. Our results show that the platform's recommender system produces a spatial ordering of users that is highly correlated with their Left-Right positions (Pearson rho=0.887, p-value < 0.0001), and that cannot be explained by socio-demographic attributes. These results open new possibilities for studying the interaction between human and AI systems. They also raise important questions linked to the legal definition of algorithmic profiling in data privacy regulation by blurring the line between active and passive profiling. We explore new constrained recommendation methods enabled by our results, limiting the political information in the recommender as a potential tool for privacy compliance capable of preserving recommendation relevance.
This paper proposes a graph-augmented reasoning framework for tobacco pest and disease management that integrates structured domain knowledge into large language models. Building on GraphRAG, we construct a domain-specific knowledge graph and retrieve query-relevant subgraphs to provide relational evidence during answer generation. The framework adopts ChatGLM as the Transformer backbone with LoRA-based parameter-efficient fine-tuning, and employs a graph neural network to learn node representations that capture symptom-disease-treatment dependencies. By explicitly modeling diseases, symptoms, pesticides, and control measures as linked entities, the system supports evidence-aware retrieval beyond surface-level text similarity. Retrieved graph evidence is incorporated into the LLM input to guide generation toward domain-consistent recommendations and to mitigate hallucinated or inappropriate treatments. Experimental results show consistent improvements over text-only baselines, with the largest gains observed on multi-hop and comparative reasoning questions that require chaining multiple relations.
Semantic ID (SID)-based recommendation is a promising paradigm for scaling sequential recommender systems, but existing methods largely follow a semantic-centric pipeline: item embeddings are learned from foundation models and discretized using generic quantization schemes. This design is misaligned with generative recommendation objectives: semantic embeddings are weakly coupled with collaborative prediction, and generic quantization is inefficient at reducing sequential uncertainty for autoregressive modeling. To address these, we propose ReSID, a recommendation-native, principled SID framework that rethinks representation learning and quantization from the perspective of information preservation and sequential predictability, without relying on LLMs. ReSID consists of two components: (i) Field-Aware Masked Auto-Encoding (FAMAE), which learns predictive-sufficient item representations from structured features, and (ii) Globally Aligned Orthogonal Quantization (GAOQ), which produces compact and predictable SID sequences by jointly reducing semantic ambiguity and prefix-conditional uncertainty. Theoretical analysis and extensive experiments across ten datasets show the effectiveness of ReSID. ReSID consistently outperforms strong sequential and SID-based generative baselines by an average of over 10%, while reducing tokenization cost by up to 122x. Code is available at https://github.com/FuCongResearchSquad/ReSID.
Large language models (LLMs) are advancing rapidly in medical NLP, yet Traditional Chinese Medicine (TCM) with its distinctive ontology, terminology, and reasoning patterns requires domain-faithful evaluation. Existing TCM benchmarks are fragmented in coverage and scale and rely on non-unified or generation-heavy scoring that hinders fair comparison. We present the LingLanMiDian (LingLan) benchmark, a large-scale, expert-curated, multi-task suite that unifies evaluation across knowledge recall, multi-hop reasoning, information extraction, and real-world clinical decision-making. LingLan introduces a consistent metric design, a synonym-tolerant protocol for clinical labels, a per-dataset 400-item Hard subset, and a reframing of diagnosis and treatment recommendation into single-choice decision recognition. We conduct comprehensive, zero-shot evaluations on 14 leading open-source and proprietary LLMs, providing a unified perspective on their strengths and limitations in TCM commonsense knowledge understanding, reasoning, and clinical decision support; critically, the evaluation on Hard subset reveals a substantial gap between current models and human experts in TCM-specialized reasoning. By bridging fundamental knowledge and applied reasoning through standardized evaluation, LingLan establishes a unified, quantitative, and extensible foundation for advancing TCM LLMs and domain-specific medical AI research. All evaluation data and code are available at https://github.com/TCMAI-BJTU/LingLan and http://tcmnlp.com.
We study online inverse linear optimization, also known as contextual recommendation, where a learner sequentially infers an agent's hidden objective vector from observed optimal actions over feasible sets that change over time. The learner aims to recommend actions that perform well under the agent's true objective, and the performance is measured by the regret, defined as the cumulative gap between the agent's optimal values and those achieved by the learner's recommended actions. Prior work has established a regret bound of $O(d\log T)$, as well as a finite but exponentially large bound of $\exp(O(d\log d))$, where $d$ is the dimension of the optimization problem and $T$ is the time horizon, while a regret lower bound of $Ω(d)$ is known (Gollapudi et al. 2021; Sakaue et al. 2025). Whether a finite regret bound polynomial in $d$ is achievable or not has remained an open question. We partially resolve this by showing that when the feasible sets are M-convex -- a broad class that includes matroids -- a finite regret bound of $O(d\log d)$ is possible. We achieve this by combining a structural characterization of optimal solutions on M-convex sets with a geometric volume argument. Moreover, we extend our approach to adversarially corrupted feedback in up to $C$ rounds. We obtain a regret bound of $O((C+1)d\log d)$ without prior knowledge of $C$, by monitoring directed graphs induced by the observed feedback to detect corruptions adaptively.
In the wave of generative recommendation, we present OneMall, an end-to-end generative recommendation framework tailored for e-commerce services at Kuaishou. Our OneMall systematically unifies the e-commerce's multiple item distribution scenarios, such as Product-card, short-video and live-streaming. Specifically, it comprises three key components, aligning the entire model training pipeline to the LLM's pre-training/post-training: (1) E-commerce Semantic Tokenizer: we provide a tokenizer solution that captures both real-world semantics and business-specific item relations across different scenarios; (2) Transformer-based Architecture: we largely utilize Transformer as our model backbone, e.g., employing Query-Former for long sequence compression, Cross-Attention for multi-behavior sequence fusion, and Sparse MoE for scalable auto-regressive generation; (3) Reinforcement Learning Pipeline: we further connect retrieval and ranking models via RL, enabling the ranking model to serve as a reward signal for end-to-end policy retrieval model optimization. Extensive experiments demonstrate that OneMall achieves consistent improvements across all e-commerce scenarios: +13.01\% GMV in product-card, +15.32\% Orders in Short-Video, and +2.78\% Orders in Live-Streaming. OneMall has been deployed, serving over 400 million daily active users at Kuaishou.
Large Language Models (LLMs) increasingly underpin intelligent web applications, from chatbots to search and recommendation, where efficient specialization is essential. Low-Rank Adaptation (LoRA) enables such adaptation with minimal overhead, while federated LoRA allows web service providers to fine-tune shared models without data sharing. However, in privacy-sensitive deployments, clients inject varying levels of differential privacy (DP) noise, creating privacy heterogeneity that misaligns individual incentives and global performance. In this paper, we propose WinFLoRA, a privacy-heterogeneous federated LoRA that utilizes aggregation weights as incentives with noise awareness. Specifically, the noises from clients are estimated based on the uploaded LoRA adapters. A larger weight indicates greater influence on the global model and better downstream task performance, rewarding lower-noise contributions. By up-weighting low-noise updates, WinFLoRA improves global accuracy while accommodating clients' heterogeneous privacy requirements. Consequently, WinFLoRA aligns heterogeneous client utility in terms of privacy and downstream performance with global model objectives without third-party involvement. Extensive evaluations demonstrate that across multiple LLMs and datasets, WinFLoRA achieves up to 52.58% higher global accuracy and up to 2.56x client utility than state-of-the-art benchmarks. Source code is publicly available at https://github.com/koums24/WinFLoRA.git.
Electroencephalography (EEG) underpins neuroscience, clinical neurophysiology, and brain-computer interfaces (BCIs), yet pronounced inter- and intra-subject variability limits reliability, reproducibility, and translation. This systematic review studies that quantified or modeled EEG variability across resting-state, event-related potentials (ERPs), and task-related/BCI paradigms (including motor imagery and SSVEP) in healthy and clinical cohorts. Across paradigms, inter-subject differences are typically larger than within-subject fluctuations, but both affect inference and model generalization. Stability is feature-dependent: alpha-band measures and individual alpha peak frequency are often relatively reliable, whereas higher-frequency and many connectivity-derived metrics show more heterogeneous reliability; ERP reliability varies by component, with P300 measures frequently showing moderate-to-good stability. We summarize major sources of variability (biological, state-related, technical, and analytical), review common quantification and modeling approaches (e.g., ICC, CV, SNR, generalizability theory, and multivariate/learning-based methods), and provide recommendations for study design, reporting, and harmonization. Overall, EEG variability should be treated as both a practical constraint to manage and a meaningful signal to leverage for precision neuroscience and robust neurotechnology.