Abstract:We consider the task of learning from both positive and negative feedback in a sequential recommendation scenario, as both types of feedback are often present in user interactions. Meanwhile, conventional sequential learning models usually focus on considering and predicting positive interactions, ignoring that reducing items with negative feedback in recommendations improves user satisfaction with the service. Moreover, the negative feedback can potentially provide a useful signal for more accurate identification of true user interests. In this work, we propose to train two transformer encoders on separate positive and negative interaction sequences. We incorporate both types of feedback into the training objective of the sequential recommender using a composite loss function that includes positive and negative cross-entropy as well as a cleverly crafted contrastive term, that helps better modeling opposing patterns. We demonstrate the effectiveness of this approach in terms of increasing true-positive metrics compared to state-of-the-art sequential recommendation methods while reducing the number of wrongly promoted negative items.
Abstract:In modern recommender systems, experimental settings typically include filtering out cold users and items based on a minimum interaction threshold. However, these thresholds are often chosen arbitrarily and vary widely across studies, leading to inconsistencies that can significantly affect the comparability and reliability of evaluation results. In this paper, we systematically explore the cold-start boundary by examining the criteria used to determine whether a user or an item should be considered cold. Our experiments incrementally vary the number of interactions for different items during training, and gradually update the length of user interaction histories during inference. We investigate the thresholds across several widely used datasets, commonly represented in recent papers from top-tier conferences, and on multiple established recommender baselines. Our findings show that inconsistent selection of cold-start thresholds can either result in the unnecessary removal of valuable data or lead to the misclassification of cold instances as warm, introducing more noise into the system.
Abstract:Cold-start challenges in recommender systems necessitate leveraging auxiliary features beyond user-item interactions. However, the presence of irrelevant or noisy features can degrade predictive performance, whereas an excessive number of features increases computational demands, leading to higher memory consumption and prolonged training times. To address this, we propose a feature selection strategy that prioritizes the user behavioral information. Our method enhances the feature representation by incorporating correlations from collaborative behavior data using a hybrid matrix factorization technique and then ranks features using a mechanism based on the maximum volume algorithm. This approach identifies the most influential features, striking a balance between recommendation accuracy and computational efficiency. We conduct an extensive evaluation across various datasets and hybrid recommendation models, demonstrating that our method excels in cold-start scenarios by selecting minimal yet highly effective feature subsets. Even under strict feature reduction, our approach surpasses existing feature selection techniques while maintaining superior efficiency.
Abstract:The Fisher information is a fundamental concept for characterizing the sensitivity of parameters in neural networks. However, leveraging the full observed Fisher information is too expensive for large models, so most methods rely on simple diagonal approximations. While efficient, this approach ignores parameter correlations, often resulting in reduced performance on downstream tasks. In this work, we mitigate these limitations and propose Generalized Fisher-Weighted SVD (GFWSVD), a post-training LLM compression technique that accounts for both diagonal and off-diagonal elements of the Fisher information matrix, providing a more accurate reflection of parameter importance. To make the method tractable, we introduce a scalable adaptation of the Kronecker-factored approximation algorithm for the observed Fisher information. We demonstrate the effectiveness of our method on LLM compression, showing improvements over existing compression baselines. For example, at a 20 compression rate on the MMLU benchmark, our method outperforms FWSVD, which is based on a diagonal approximation of the Fisher information, by 5 percent, SVD-LLM by 3 percent, and ASVD by 6 percent compression rate.
Abstract:In this paper, we propose a new geometric approach for knowledge graph completion via low rank tensor approximation. We augment a pretrained and well-established Euclidean model based on a Tucker tensor decomposition with a novel hyperbolic interaction term. This correction enables more nuanced capturing of distributional properties in data better aligned with real-world knowledge graphs. By combining two geometries together, our approach improves expressivity of the resulting model achieving new state-of-the-art link prediction accuracy with a significantly lower number of parameters compared to the previous Euclidean and hyperbolic models.
Abstract:Scalability issue plays a crucial role in productionizing modern recommender systems. Even lightweight architectures may suffer from high computational overload due to intermediate calculations, limiting their practicality in real-world applications. Specifically, applying full Cross-Entropy (CE) loss often yields state-of-the-art performance in terms of recommendations quality. Still, it suffers from excessive GPU memory utilization when dealing with large item catalogs. This paper introduces a novel Scalable Cross-Entropy (SCE) loss function in the sequential learning setup. It approximates the CE loss for datasets with large-size catalogs, enhancing both time efficiency and memory usage without compromising recommendations quality. Unlike traditional negative sampling methods, our approach utilizes a selective GPU-efficient computation strategy, focusing on the most informative elements of the catalog, particularly those most likely to be false positives. This is achieved by approximating the softmax distribution over a subset of the model outputs through the maximum inner product search. Experimental results on multiple datasets demonstrate the effectiveness of SCE in reducing peak memory usage by a factor of up to 100 compared to the alternatives, retaining or even exceeding their metrics values. The proposed approach also opens new perspectives for large-scale developments in different domains, such as large language models.
Abstract:Scalability is a major challenge in modern recommender systems. In sequential recommendations, full Cross-Entropy (CE) loss achieves state-of-the-art recommendation quality but consumes excessive GPU memory with large item catalogs, limiting its practicality. Using a GPU-efficient locality-sensitive hashing-like algorithm for approximating large tensor of logits, this paper introduces a novel RECE (REduced Cross-Entropy) loss. RECE significantly reduces memory consumption while allowing one to enjoy the state-of-the-art performance of full CE loss. Experimental results on various datasets show that RECE cuts training peak memory usage by up to 12 times compared to existing methods while retaining or exceeding performance metrics of CE loss. The approach also opens up new possibilities for large-scale applications in other domains.
Abstract:Recent recommender system advancements have focused on developing sequence-based and graph-based approaches. Both approaches proved useful in modeling intricate relationships within behavioral data, leading to promising outcomes in personalized ranking and next-item recommendation tasks while maintaining good scalability. However, they capture very different signals from data. While the former approach represents users directly through ordered interactions with recent items, the latter aims to capture indirect dependencies across the interactions graph. This paper presents a novel multi-representational learning framework exploiting these two paradigms' synergies. Our empirical evaluation on several datasets demonstrates that mutual training of sequential and graph components with the proposed framework significantly improves recommendations performance.
Abstract:We introduce the novel approach towards fake text reviews detection in collaborative filtering recommender systems. The existing algorithms concentrate on detecting the fake reviews, generated by language models and ignore the texts, written by dishonest users, mostly for monetary gains. We propose the contrastive learning-based architecture, which utilizes the user demographic characteristics, along with the text reviews, as the additional evidence against fakes. This way, we are able to account for two different types of fake reviews spamming and make the recommendation system more robust to biased reviews.
Abstract:Self-attentive transformer models have recently been shown to solve the next item recommendation task very efficiently. The learned attention weights capture sequential dynamics in user behavior and generalize well. Motivated by the special structure of learned parameter space, we question if it is possible to mimic it with an alternative and more lightweight approach. We develop a new tensor factorization-based model that ingrains the structural knowledge about sequential data within the learning process. We demonstrate how certain properties of a self-attention network can be reproduced with our approach based on special Hankel matrix representation. The resulting model has a shallow linear architecture and compares competitively to its neural counterpart.