Abstract:Recommendation systems have faced significant challenges in cold-start scenarios, where new items with a limited history of interaction need to be effectively recommended to users. Though multimodal data (e.g., images, text, audio, etc.) offer rich information to address this issue, existing approaches often employ simplistic integration methods such as concatenation, average pooling, or fixed weighting schemes, which fail to capture the complex relationships between modalities. Our study proposes a novel Mixture of Experts (MoE) framework for multimodal cold-start recommendation, named MAMEX, which dynamically leverages latent representation from different modalities. MAMEX utilizes modality-specific expert networks and introduces a learnable gating mechanism that adaptively weights the contribution of each modality based on its content characteristics. This approach enables MAMEX to emphasize the most informative modalities for each item while maintaining robustness when certain modalities are less relevant or missing. Extensive experiments on benchmark datasets show that MAMEX outperforms state-of-the-art methods in cold-start scenarios, with superior accuracy and adaptability. For reproducibility, the code has been made available on Github https://github.com/L2R-UET/MAMEX.
Abstract:Bundle recommendation aims to recommend a set of items to each user. However, the sparser interactions between users and bundles raise a big challenge, especially in cold-start scenarios. Traditional collaborative filtering methods do not work well for this kind of problem because these models rely on interactions to update the latent embedding, which is hard to work in a cold-start setting. We propose a new approach (DisCo), which relies on a personalized Diffusion backbone, enhanced by disentangled aspects for the user's interest, to generate a bundle in distribution space for each user to tackle the cold-start challenge. During the training phase, DisCo adjusts an additional objective loss term to avoid bias, a prevalent issue while using the generative model for top-$K$ recommendation purposes. Our empirical experiments show that DisCo outperforms five comparative baselines by a large margin on three real-world datasets. Thereby, this study devises a promising framework and essential viewpoints in cold-start recommendation. Our materials for reproducibility are available at: https://github.com/bt-nghia/DisCo.
Abstract:Bundle recommendation aims to suggest a set of interconnected items to users. However, diverse interaction types and sparse interaction matrices often pose challenges for previous approaches in accurately predicting user-bundle adoptions. Inspired by the distant supervision strategy and generative paradigm, we propose BRIDGE, a novel framework for bundle recommendation. It consists of two main components namely the correlation-based item clustering and the pseudo bundle generation modules. Inspired by the distant supervision approach, the former is to generate more auxiliary information, e.g., instructive item clusters, for training without using external data. This information is subsequently aggregated with collaborative signals from user historical interactions to create pseudo `ideal' bundles. This capability allows BRIDGE to explore all aspects of bundles, rather than being limited to existing real-world bundles. It effectively bridging the gap between user imagination and predefined bundles, hence improving the bundle recommendation performance. Experimental results validate the superiority of our models over state-of-the-art ranking-based methods across five benchmark datasets.
Abstract:Bundle recommendation aims to enhance business profitability and user convenience by suggesting a set of interconnected items. In real-world scenarios, leveraging the impact of asymmetric item affiliations is crucial for effective bundle modeling and understanding user preferences. To address this, we present BunCa, a novel bundle recommendation approach employing item-level causation-enhanced multi-view learning. BunCa provides comprehensive representations of users and bundles through two views: the Coherent View, leveraging the Multi-Prospect Causation Network for causation-sensitive relations among items, and the Cohesive View, employing LightGCN for information propagation among users and bundles. Modeling user preferences and bundle construction combined from both views ensures rigorous cohesion in direct user-bundle interactions through the Cohesive View and captures explicit intents through the Coherent View. Simultaneously, the integration of concrete and discrete contrastive learning optimizes the consistency and self-discrimination of multi-view representations. Extensive experiments with BunCa on three benchmark datasets demonstrate the effectiveness of this novel research and validate our hypothesis.