Information extraction is the process of automatically extracting structured information from unstructured text data.
Recent advances in Generative Artificial Intelligence (AI), particularly Large Language Models (LLMs), enable scalable extraction of spatial information from unstructured text and offer new methodological opportunities for studying climate geography. This study develops a spatial framework to examine how cumulative climate risk relates to multidimensional human flourishing across U.S. counties. High-resolution climate hazard indicators are integrated with a Human Flourishing Geographic Index (HFGI), an index derived from classification of 2.6 billion geotagged tweets using fine-tuned open-source Large Language Models (LLMs). These indicators are aggregated to the US county-level and mapped to a structural equation model to infer overall climate risk and human flourishing dimensions, including expressed well-being, meaning and purpose, social connectedness, psychological distress, physical condition, economic stability, religiosity, character and virtue, and institutional trust. The results reveal spatially heterogeneous associations between greater cumulative climate risk and lower levels of expressed human flourishing, with coherent spatial patterns corresponding to recurrent exposure to heat, flooding, wind, drought, and wildfire hazards. The study demonstrates how Generative AI can be combined with latent construct modeling for geographical analysis and for spatial knowledge extraction.
Extending the intelligence of sensors to the data-acquisition process - deciding whether to sample or not - can result in transformative energy-efficiency gains. However, making such a decision in a deterministic manner involves risk of losing information. Here we present a sensing paradigm that enables making such a decision in a probabilistic manner. The paradigm takes inspiration from the autonomous nervous system and employs a probabilistic neuron (p-neuron) driven by an analog feature extraction circuit. The response time of the system is on the order of microseconds, over-coming the sub-sampling-rate response time limit and enabling real-time intelligent autonomous activation of data-sampling. Validation experiments on active seismic survey data demonstrate lossless probabilistic data acquisition, with a normalized mean squared error of 0.41%, and 93% saving in the active operation time of the system and the number of generated samples.
While generative AI enables high-fidelity UI generation from text prompts, users struggle to articulate design intent and evaluate or refine results-creating gulfs of execution and evaluation. To understand the information needed for UI generation, we conducted a thematic analysis of UI prompting guidelines, identifying key design semantics and discovering that they are hierarchical and interdependent. Leveraging these findings, we developed a system that enables users to specify semantics, visualize relationships, and extract how semantics are reflected in generated UIs. By making semantics serve as an intermediate representation between human intent and AI output, our system bridges both gulfs by making requirements explicit and outcomes interpretable. A comparative user study suggests that our approach enhances users' perceived control over intent expression, outcome interpretation, and facilitates more predictable, iterative refinement. Our work demonstrates how explicit semantic representation enables systematic and explainable exploration of design possibilities in AI-driven UI design.
Reliable transformation of unstructured person and address text into structured data remains a key challenge in large-scale information systems. Traditional rule-based and probabilistic approaches perform well on clean inputs but fail under noisy or multilingual conditions, while neural and large language models (LLMs) often lack deterministic control and reproducibility. This paper introduces a prompt-driven, validation-centered framework that converts free-text records into a consistent 17-field schema without fine-tuning. The method integrates input normalisation, structured prompting, constrained decoding, and strict rule-based validation under fixed experimental settings to ensure reproducibility. Evaluations on heterogeneous real-world address data show high field-level accuracy, strong schema adherence, and stable confidence calibration. The results demonstrate that combining deterministic validation with generative prompting provides a robust, interpretable, and scalable solution for structured information extraction, offering a practical alternative to training-heavy or domain-specific models.
Existing human-robot interaction systems often lack mechanisms for sustained personalization and dynamic adaptation in multi-user environments, limiting their effectiveness in real-world deployments. We present HARMONI, a multimodal personalization framework that leverages large language models to enable socially assistive robots to manage long-term multi-user interactions. The framework integrates four key modules: (i) a perception module that identifies active speakers and extracts multimodal input; (ii) a world modeling module that maintains representations of the environment and short-term conversational context; (iii) a user modeling module that updates long-term speaker-specific profiles; and (iv) a generation module that produces contextually grounded and ethically informed responses. Through extensive evaluation and ablation studies on four datasets, as well as a real-world scenario-driven user-study in a nursing home environment, we demonstrate that HARMONI supports robust speaker identification, online memory updating, and ethically aligned personalization, outperforming baseline LLM-driven approaches in user modeling accuracy, personalization quality, and user satisfaction.
Spatial information is a critical clue for multi-channel multi-speaker target speech recognition. Most state-of-the-art multi-channel Automatic Speech Recognition (ASR) systems extract spatial features only during the speech separation stage, followed by standard single-channel ASR on the separated speech. This approach results in an inefficient, lengthy pipeline and sub-optimal ASR performance due to the accumulated errors from preprocessing modules. Furthermore, most spatial feature extraction methods depend on the knowledge of speaker positions and microphone topology, making the systems reliant on specific settings and challenging to adapt to new equipment. In this work, we propose a solution to these issues with a lightweight embedding module named SpatialEmb, which extracts and encodes spatial information directly for the ASR model, supporting both fixed and arbitrary microphone topology. We conduct comprehensive experiments on AliMeeting, a real meeting corpus, to determine the optimal model design for SpatialEmb in terms of both performance and efficiency. Our best model trained with 105 hours Train-Ali-far achieves 17.04% and 20.32% character error rates (CER) on the Eval and Test sets, establishing a new state-of-the-art result with the same training data.
Accurately predicting procurement lead time (PLT) remains a challenge in engineered-to-order industries such as shipbuilding and plant construction, where delays in a single key component can disrupt project timelines. In shipyards, pipe spools are critical components; installed deep within hull blocks soon after steel erection, any delay in their procurement can halt all downstream tasks. Recognizing their importance, existing studies predict PLT using the static physical attributes of pipe spools. However, procurement is inherently a dynamic, multi-stakeholder business process involving a continuous sequence of internal and external events at the shipyard, factors often overlooked in traditional approaches. To address this issue, this paper proposes a novel framework that combines event logs, dataset records of the procurement events, with static attributes to predict PLT. The temporal attributes of each event are extracted to reflect the continuity and temporal context of the process. Subsequently, a deep sequential neural network combined with a multi-layered perceptron is employed to integrate these static and dynamic features, enabling the model to capture both structural and contextual information in procurement. Comparative experiments are conducted using real-world pipe spool procurement data from a globally renowned South Korean shipbuilding corporation. Three tasks are evaluated, which are production, post-processing, and procurement lead time prediction. The results show a 22.6% to 50.4% improvement in prediction performance in terms of mean absolute error over the best-performing existing approaches across the three tasks. These findings indicate the value of considering procurement process information for more accurate PLT prediction.
Synthetic simulation data and real-world human data provide scalable alternatives to circumvent the prohibitive costs of robot data collection. However, these sources suffer from the sim-to-real visual gap and the human-to-robot embodiment gap, respectively, which limits the policy's generalization to real-world scenarios. In this work, we identify a natural yet underexplored complementarity between these sources: simulation offers the robot action that human data lacks, while human data provides the real-world observation that simulation struggles to render. Motivated by this insight, we present SimHum, a co-training framework to simultaneously extract kinematic prior from simulated robot actions and visual prior from real-world human observations. Based on the two complementary priors, we achieve data-efficient and generalizable robotic manipulation in real-world tasks. Empirically, SimHum outperforms the baseline by up to $\mathbf{40\%}$ under the same data collection budget, and achieves a $\mathbf{62.5\%}$ OOD success with only 80 real data, outperforming the real only baseline by $7.1\times$. Videos and additional information can be found at \href{https://kaipengfang.github.io/sim-and-human}{project website}.
In some areas of computing, natural language processing and information science, progress is made by sharing datasets and challenging the community to design the best algorithm for an associated task. This article introduces a shared dataset of 1446 short texts, each of which describes a research quality score on the UK scale of 1* to 4*. This is a messy collection, with some texts not containing scores and others including invalid scores or strange formats. With this dataset there is also a description of what constitutes a valid score and a "gold standard" of the correct scores for these texts (including missing values). The challenge is to design a prompt for Large Language Models (LLMs) to extract the scores from these texts as accurately as possible. The format for the response should be a number and no other text so there are two aspects to the challenge: ensuring that the LLM returns only a number, and instructing it to deduce the correct number for the text. As part of this, the LLM prompt needs to explain when to return the missing value code, -1, instead of a number when the text does not clearly contain one. The article also provides an example of a simple prompt. The purpose of the challenge is twofold: to get an effective solution to this problem, and to increase understanding of prompt design and LLM capabilities for complex numerical tasks. The initial solution suggested has an accuracy of 72.6%, so the challenge is to beat this.
In social recommenders, the inherent nonlinearity and opacity of synergistic effects across multiple social networks hinders users from understanding how diverse information is leveraged for recommendations, consequently diminishing explainability. However, existing explainers can only identify the topological information in social networks that significantly influences recommendations, failing to further explain the synergistic effects among this information. Inspired by existing findings that synergistic effects enhance mutual information between inputs and predictions to generate information gain, we extend this discovery to graph data. We quantify graph information gain to identify subgraphs embodying synergistic effects. Based on the theoretical insights, we propose SemExplainer, which explains synergistic effects by identifying subgraphs that embody them. SemExplainer first extracts explanatory subgraphs from multi-view social networks to generate preliminary importance explanations for recommendations. A conditional entropy optimization strategy to maximize information gain is developed, thereby further identifying subgraphs that embody synergistic effects from explanatory subgraphs. Finally, SemExplainer searches for paths from users to recommended items within the synergistic subgraphs to generate explanations for the recommendations. Extensive experiments on three datasets demonstrate the superiority of SemExplainer over baseline methods, providing superior explanations of synergistic effects.