Information extraction is the process of automatically extracting structured information from unstructured text data.
Dataset Distillation (DD) seeks to create a compact dataset from a large, real-world dataset. While recent methods often rely on heuristic approaches to balance efficiency and quality, the fundamental relationship between original and synthetic data remains underexplored. This paper revisits knowledge distillation-based dataset distillation within a solid theoretical framework. We introduce the concepts of Informativeness and Utility, capturing crucial information within a sample and essential samples in the training set, respectively. Building on these principles, we define optimal dataset distillation mathematically. We then present InfoUtil, a framework that balances informativeness and utility in synthesizing the distilled dataset. InfoUtil incorporates two key components: (1) game-theoretic informativeness maximization using Shapley Value attribution to extract key information from samples, and (2) principled utility maximization by selecting globally influential samples based on Gradient Norm. These components ensure that the distilled dataset is both informative and utility-optimized. Experiments demonstrate that our method achieves a 6.1\% performance improvement over the previous state-of-the-art approach on ImageNet-1K dataset using ResNet-18.
Municipal meeting minutes are official documents of local governance, exhibiting heterogeneous formats and writing styles. Effective information retrieval (IR) requires identifying metadata such as meeting number, date, location, participants, and start/end times, elements that are rarely standardized or easy to extract automatically. Existing named entity recognition (NER) models are ill-suited to this task, as they are not adapted to such domain-specific categories. In this paper, we propose a two-stage pipeline for metadata extraction from municipal minutes. First, a question answering (QA) model identifies the opening and closing text segments containing metadata. Transformer-based models (BERTimbau and XLM-RoBERTa with and without a CRF layer) are then applied for fine-grained entity extraction and enhanced through deslexicalization. To evaluate our proposed pipeline, we benchmark both open-weight (Phi) and closed-weight (Gemini) LLMs, assessing predictive performance, inference cost, and carbon footprint. Our results demonstrate strong in-domain performance, better than larger general-purpose LLMs. However, cross-municipality evaluation reveals reduced generalization reflecting the variability and linguistic complexity of municipal records. This work establishes the first benchmark for metadata extraction from municipal meeting minutes, providing a solid foundation for future research in this domain.
Large language models (LLMs) have demonstrated strong performance on medical benchmarks, including question answering and diagnosis. To enable their use in clinical settings, LLMs are typically further adapted through continued pretraining or post-training using clinical data. However, most medical LLMs are trained on data from a single institution, which faces limitations in generalizability and safety in heterogeneous systems. Federated learning (FL) is a promising solution for enabling collaborative model development across healthcare institutions. Yet applying FL to LLMs in medicine remains fundamentally limited. First, conventional FL requires transmitting the full model during each communication round, which becomes impractical for multi-billion-parameter LLMs given the limited computational resources. Second, many FL algorithms implicitly assume data homogeneity, whereas real-world clinical data are highly heterogeneous across patients, diseases, and institutional practices. We introduce the model-agnostic and parameter-efficient federated learning framework for adapting LLMs to medical applications. Fed-MedLoRA transmits only low-rank adapter parameters, reducing communication and computation overhead, while Fed-MedLoRA+ further incorporates adaptive, data-aware aggregation to improve convergence under cross-site heterogeneity. We apply the framework to clinical information extraction (IE), which transforms patient narratives into structured medical entities and relations. Accuracy was assessed across five patient cohorts through comparisons with BERT models, and LLaMA-3 and DeepSeek-R1, GPT-4o models. Evaluation settings included (1) in-domain training and testing, (2) external validation on independent cohorts, and (3) a low-resource new-site adaptation scenario using real-world clinical notes from the Yale New Haven Health System.
The development of large vision language models drives the demand for managing, and applying massive amounts of multimodal data, making OCR technology, which extracts information from visual images, increasingly popular. However, existing OCR methods primarily focus on recognizing text elements from images or scanned documents (\textbf{Text-centric OCR}), neglecting the identification of visual elements from visually information-dense image sources (\textbf{Vision-centric OCR}), such as charts, web pages and science plots. In reality, these visually information-dense images are widespread on the internet and have significant real-world application value, such as data visualization and web page analysis. In this technical report, we propose \textbf{OCRVerse}, the first holistic OCR method in end-to-end manner that enables unified text-centric OCR and vision-centric OCR. To this end, we constructe comprehensive data engineering to cover a wide range of text-centric documents, such as newspapers, magazines and books, as well as vision-centric rendered composites, including charts, web pages and scientific plots. Moreover, we propose a two-stage SFT-RL multi-domain training method for OCRVerse. SFT directly mixes cross-domain data to train and establish initial domain knowledge, while RL focuses on designing personalized reward strategies for the characteristics of each domain. Specifically, since different domains require various output formats and expected outputs, we provide sufficient flexibility in the RL stage to customize flexible reward signals for each domain, thereby improving cross-domain fusion and avoiding data conflicts. Experimental results demonstrate the effectiveness of OCRVerse, achieving competitive results across text-centric and vision-centric data types, even comparable to large-scale open-source and closed-source models.
Multi-graph learning is crucial for extracting meaningful signals from collections of heterogeneous graphs. However, effectively integrating information across graphs with differing topologies, scales, and semantics, often in the absence of shared node identities, remains a significant challenge. We present the Multi-Graph Meta-Transformer (MGMT), a unified, scalable, and interpretable framework for cross-graph learning. MGMT first applies Graph Transformer encoders to each graph, mapping structure and attributes into a shared latent space. It then selects task-relevant supernodes via attention and builds a meta-graph that connects functionally aligned supernodes across graphs using similarity in the latent space. Additional Graph Transformer layers on this meta-graph enable joint reasoning over intra- and inter-graph structure. The meta-graph provides built-in interpretability: supernodes and superedges highlight influential substructures and cross-graph alignments. Evaluating MGMT on both synthetic datasets and real-world neuroscience applications, we show that MGMT consistently outperforms existing state-of-the-art models in graph-level prediction tasks while offering interpretable representations that facilitate scientific discoveries. Our work establishes MGMT as a unified framework for structured multi-graph learning, advancing representation techniques in domains where graph-based data plays a central role.
The emergence of Large Reasoning Models (LRMs) introduces a new paradigm of explicit reasoning, enabling remarkable advances yet posing unique risks such as reasoning manipulation and information leakage. To mitigate these risks, current alignment strategies predominantly rely on heavy post-training paradigms or external interventions. However, these approaches are often computationally intensive and fail to address the inherent awareness-compliance gap, a critical misalignment where models recognize potential risks yet prioritize following user instructions due to their sycophantic tendencies. To address these limitations, we propose Self-Guard, a lightweight safety defense framework that reinforces safety compliance at the representational level. Self-Guard operates through two principal stages: (1) safety-oriented prompting, which activates the model's latent safety awareness to evoke spontaneous reflection, and (2) safety activation steering, which extracts the resulting directional shift in the hidden state space and amplifies it to ensure that safety compliance prevails over sycophancy during inference. Experiments demonstrate that Self-Guard effectively bridges the awareness-compliance gap, achieving robust safety performance without compromising model utility. Furthermore, Self-Guard exhibits strong generalization across diverse unseen risks and varying model scales, offering a cost-efficient solution for LRM safety alignment.
Multivariate time-series forecasting, as a typical problem in the field of time series prediction, has a wide range of applications in weather forecasting, traffic flow prediction, and other scenarios. However, existing works do not effectively consider the impact of extraneous variables on the prediction of the target variable. On the other hand, they fail to fully extract complex sequence information based on various time patterns of the sequences. To address these drawbacks, we propose a DA-SPS model, which adopts different modules for feature extraction based on the information characteristics of different variables. DA-SPS mainly consists of two stages: the target variable processing stage (TVPS) and the extraneous variables processing stage (EVPS). In TVPS, the model first uses Singular Spectrum Analysis (SSA) to process the target variable sequence and then uses Long Short-Term Memory (LSTM) and P-Conv-LSTM which deploys a patching strategy to extract features from trend and seasonality components, respectively. In EVPS, the model filters extraneous variables that have a strong correlation with the target variate by using Spearman correlation analysis and further analyses them using the L-Attention module which consists of LSTM and attention mechanism. Finally, the results obtained by TVPS and EVPS are combined through weighted summation and linear mapping to produce the final prediction. The results on four public datasets demonstrate that the DA-SPS model outperforms existing state-of-the-art methods. Additionally, its performance in real-world scenarios is further validated using a private dataset collected by ourselves, which contains the test items' information on laptop motherboards.
While Chain-of-Thought (CoT) significantly enhances the performance of Large Language Models (LLMs), explicit reasoning chains introduce substantial computational redundancy. Recent latent reasoning methods attempt to mitigate this by compressing reasoning processes into latent space, but often suffer from severe performance degradation due to the lack of appropriate compression guidance. In this study, we propose Rendered CoT-Guided variational Latent Reasoning (ReGuLaR), a simple yet novel latent learning paradigm resolving this issue. Fundamentally, we formulate latent reasoning within the Variational Auto-Encoding (VAE) framework, sampling the current latent reasoning state from the posterior distribution conditioned on previous ones. Specifically, when learning this variational latent reasoning model, we render explicit reasoning chains as images, from which we extract dense visual-semantic representations to regularize the posterior distribution, thereby achieving efficient compression with minimal information loss. Extensive experiments demonstrate that ReGuLaR significantly outperforms existing latent reasoning methods across both computational efficiency and reasoning effectiveness, and even surpasses CoT through multi-modal reasoning, providing a new and insightful solution to latent reasoning. Code: https://github.com/FanmengWang/ReGuLaR.
Despite their empirical success, neural network classifiers remain difficult to interpret. In softmax-based models, class regions are defined implicitly as solutions to systems of inequalities among logits, making them difficult to extract and visualize. We introduce Partition of Unity Neural Networks (PUNN), an architecture in which class probabilities arise directly from a learned partition of unity, without requiring a softmax layer. PUNN constructs $k$ nonnegative functions $h_1, \ldots, h_k$ satisfying $\sum_i h_i(x) = 1$, where each $h_i(x)$ directly represents $P(\text{class } i \mid x)$. Unlike softmax, where class regions are defined implicitly through coupled inequalities among logits, each PUNN partition function $h_i$ directly defines the probability of class $i$ as a standalone function of $x$. We prove that PUNN is dense in the space of continuous probability maps on compact domains. The gate functions $g_i$ that define the partition can use various activation functions (sigmoid, Gaussian, bump) and parameterizations ranging from flexible MLPs to parameter-efficient shape-informed designs (spherical shells, ellipsoids, spherical harmonics). Experiments on synthetic data, UCI benchmarks, and MNIST show that PUNN with MLP-based gates achieves accuracy within 0.3--0.6\% of standard multilayer perceptrons. When geometric priors match the data structure, shape-informed gates achieve comparable accuracy with up to 300$\times$ fewer parameters. These results demonstrate that interpretable-by-design architectures can be competitive with black-box models while providing transparent class probability assignments.
Key Information Extraction (KIE) from visually-rich documents (VrDs) is a critical task, for which recent Large Language Models (LLMs) and Multi-Modal Large Language Models (MLLMs) have demonstrated strong potential. However, their reliance on autoregressive inference, which generates outputs sequentially, creates a significant efficiency bottleneck, especially as KIE tasks often involve extracting multiple, semantically independent fields. To overcome this limitation, we introduce PIP: a Parallel Inference Paradigm for KIE. Our approach reformulates the problem by using "[mask]" tokens as placeholders for all target values, enabling their simultaneous generation in a single forward pass. To facilitate this paradigm, we develop a tailored mask pre-training strategy and construct large-scale supervised datasets. Experimental results show that our PIP-models achieve a 5-36x inference speedup with negligible performance degradation compared to traditional autoregressive base models. By substantially improving efficiency while maintaining high accuracy, PIP paves the way for scalable and practical real-world KIE solutions.