Information extraction is the process of automatically extracting structured information from unstructured text data.
Weakly supervised multimodal video anomaly detection has gained significant attention, yet the potential of the text modality remains under-explored. Text provides explicit semantic information that can enhance anomaly characterization and reduce false alarms. However, extracting effective text features is challenging due to the inability of general-purpose language models to capture anomaly-specific nuances and the scarcity of relevant descriptions. Furthermore, multimodal fusion often suffers from redundancy and imbalance. To address these issues, we propose a novel text-guided framework. First, we introduce an in-context learning-based multi-stage text augmentation mechanism to generate high-quality anomaly text samples for fine-tuning the text feature extractor. Second, we design a multi-scale bottleneck Transformer fusion module that uses compressed bottleneck tokens to progressively integrate information across modalities, mitigating redundancy and imbalance. Experiments on UCF-Crime and XD-Violence demonstrate state-of-the-art performance.
While Large Language Models (LLMs) are increasingly deployed for table-related tasks, the internal mechanisms enabling them to process linearized two-dimensional structured tables remain opaque. In this work, we investigate the process of table understanding by dissecting the atomic task of cell location. Through activation patching and complementary interpretability techniques, we delineate the table understanding mechanism into a sequential three-stage pipeline: Semantic Binding, Coordinate Localization, and Information Extraction. We demonstrate that models locate the target cell via an ordinal mechanism that counts discrete delimiters to resolve coordinates. Furthermore, column indices are encoded within a linear subspace that allows for precise steering of model focus through vector arithmetic. Finally, we reveal that models generalize to multi-cell location tasks by multiplexing the identical attention heads identified during atomic location. Our findings provide a comprehensive explanation of table understanding within Transformer architectures.
With the continuous progress of digitization in Chinese judicial institutions, a substantial amount of electronic legal document information has been accumulated. To unlock its potential value, entity and relation extraction for legal documents has emerged as a crucial task. However, existing methods often lack domain-specific knowledge and fail to account for the unique characteristics of the judicial domain. In this paper, we propose an entity and relation extraction algorithm based on hypergraph neural network (Legal-KAHRE) for drug-related judgment documents. Firstly, we design a candidate span generator based on neighbor-oriented packing strategy and biaffine mechanism, which identifies spans likely to contain entities. Secondly, we construct a legal dictionary with judicial domain knowledge and integrate it into text encoding representation using multi-head attention. Additionally, we incorporate domain-specific cases like joint crimes and combined punishment for multiple crimes into the hypergraph structure design. Finally, we employ a hypergraph neural network for higher-order inference via message passing. Experimental results on the CAIL2022 information extraction dataset demonstrate that our method significantly outperforms existing baseline models.
The growing volume of video-based news content has heightened the need for transparent and reliable methods to extract on-screen information. Yet the variability of graphical layouts, typographic conventions, and platform-specific design patterns renders manual indexing impractical. This work presents a comprehensive framework for automatically detecting and extracting personal names from broadcast and social-media-native news videos. It introduces a curated and balanced corpus of annotated frames capturing the diversity of contemporary news graphics and proposes an interpretable, modular extraction pipeline designed to operate under deterministic and auditable conditions. The pipeline is evaluated against a contrasting class of generative multimodal methods, revealing a clear trade-off between deterministic auditability and stochastic inference. The underlying detector achieves 95.8% mAP@0.5, demonstrating operationally robust performance for graphical element localisation. While generative systems achieve marginally higher raw accuracy (F1: 84.18% vs 77.08%), they lack the transparent data lineage required for journalistic and analytical contexts. The proposed pipeline delivers balanced precision (79.9%) and recall (74.4%), avoids hallucination, and provides full traceability across each processing stage. Complementary user findings indicate that 59% of respondents report difficulty reading on-screen names in fast-paced broadcasts, underscoring the practical relevance of the task. The results establish a methodologically rigorous and interpretable baseline for hybrid multimodal information extraction in modern news media.
Morphable Models (3DMMs) are a type of morphable model that takes 2D images as inputs and recreates the structure and physical appearance of 3D objects, especially human faces and bodies. 3DMM combines identity and expression blendshapes with a basic face mesh to create a detailed 3D model. The variability in the 3D Morphable models can be controlled by tuning diverse parameters. They are high-level image descriptors, such as shape, texture, illumination, and camera parameters. Previous research in 3D human reconstruction concentrated solely on global face structure or geometry, ignoring face semantic features such as age, gender, and facial landmarks characterizing facial boundaries, curves, dips, and wrinkles. In order to accommodate changes in these high-level facial characteristics, this work introduces a shape and appearance-aware 3D reconstruction system (named SARS by us), a c modular pipeline that extracts body and face information from a single image to properly rebuild the 3D model of the human full body.
Humanitarian crises demand timely and accurate geographic information to inform effective response efforts. Yet, automated systems that extract locations from text often reproduce existing geographic and socioeconomic biases, leading to uneven visibility of crisis-affected regions. This paper investigates whether Large Language Models (LLMs) can address these geographic disparities in extracting location information from humanitarian documents. We introduce a two-step framework that combines few-shot LLM-based named entity recognition with an agent-based geocoding module that leverages context to resolve ambiguous toponyms. We benchmark our approach against state-of-the-art pretrained and rule-based systems using both accuracy and fairness metrics across geographic and socioeconomic dimensions. Our evaluation uses an extended version of the HumSet dataset with refined literal toponym annotations. Results show that LLM-based methods substantially improve both the precision and fairness of geolocation extraction from humanitarian texts, particularly for underrepresented regions. By bridging advances in LLM reasoning with principles of responsible and inclusive AI, this work contributes to more equitable geospatial data systems for humanitarian response, advancing the goal of leaving no place behind in crisis analytics.
Full models of the world require complex knowledge of immense detail. While pre-trained large models have been hypothesized to contain similar knowledge due to extensive pre-training on vast amounts of internet scale data, using them directly in a search procedure is inefficient and inaccurate. Conversely, partial models focus on making high quality predictions for a subset of state and actions: those linked through affordances that achieve user intents~\citep{khetarpal2020can}. Can we posit large models as partial world models? We provide a formal answer to this question, proving that agents achieving task-agnostic, language-conditioned intents necessarily possess predictive partial-world models informed by affordances. In the multi-task setting, we introduce distribution-robust affordances and show that partial models can be extracted to significantly improve search efficiency. Empirical evaluations in tabletop robotics tasks demonstrate that our affordance-aware partial models reduce the search branching factor and achieve higher rewards compared to full world models.
Macroscopic traffic safety modeling aims to identify critical risk factors for regional crashes, thereby informing targeted policy interventions for safety improvement. However, current approaches rely heavily on static sociodemographic and infrastructure metrics, frequently overlooking the impacts from drivers' visual perception of driving environment. Although visual environment features have been found to impact driving and traffic crashes, existing evidence remains largely observational, failing to establish the robust causality for traffic policy evaluation under complex spatial environment. To fill these gaps, we applied semantic segmentation on Google Street View imageries to extract visual environmental features and proposed a Double Machine Learning framework to quantify their causal effects on regional crashes. Meanwhile, we utilized SHAP values to characterize the nonlinear influence mechanisms of confounding variables in the models and applied causal forests to estimate conditional average treatment effects. Leveraging crash records from the Miami metropolitan area, Florida, and 220,000 street view images, evidence shows that greenery proportion exerts a significant and robust negative causal effect on traffic crashes (Average Treatment Effect = -6.38, p = 0.005). This protective effect exhibits spatial heterogeneity, being most pronounced in densely populated and socially vulnerable urban cores. While greenery significantly mitigates angle and rear-end crashes, its protective benefit for vulnerable road users (VRUs) remains limited. Our findings provide causal evidence for greening as a potential safety intervention, prioritizing hazardous visual environments while highlighting the need for distinct design optimizations to protect VRUs.
Vision-Language-Action (VLA) models have recently achieved remarkable progress in robotic perception and control, yet most existing approaches primarily rely on VLM trained using 2D images, which limits their spatial understanding and action grounding in complex 3D environments. To address this limitation, we propose a novel framework that integrates depth estimation into VLA models to enrich 3D feature representations. Specifically, we employ a depth estimation baseline called VGGT to extract geometry-aware 3D cues from standard RGB inputs, enabling efficient utilization of existing large-scale 2D datasets while implicitly recovering 3D structural information. To further enhance the reliability of these depth-derived features, we introduce a new module called action assistant, which constrains the learned 3D representations with action priors and ensures their consistency with downstream control tasks. By fusing the enhanced 3D features with conventional 2D visual tokens, our approach significantly improves the generalization ability and robustness of VLA models. Experimental results demonstrate that the proposed method not only strengthens perception in geometrically ambiguous scenarios but also leads to superior action prediction accuracy. This work highlights the potential of depth-driven data augmentation and auxiliary expert supervision for bridging the gap between 2D observations and 3D-aware decision-making in robotic systems.
City councils play a crucial role in local governance, directly influencing citizens' daily lives through decisions made during municipal meetings. These deliberations are formally documented in meeting minutes, which serve as official records of discussions, decisions, and voting outcomes. Despite their importance, municipal meeting records have received little attention in Information Retrieval (IR) and Natural Language Processing (NLP), largely due to the lack of annotated datasets, which ultimately limit the development of computational models. To address this gap, we introduce CitiLink-Minutes, a multilayer dataset of 120 European Portuguese municipal meeting minutes from six municipalities. Unlike prior annotated datasets of parliamentary or video records, CitiLink-Minutes provides multilayer annotations and structured linkage of official written minutes. The dataset contains over one million tokens, with all personal identifiers de-identified. Each minute was manually annotated by two trained annotators and curated by an experienced linguist across three complementary dimensions: (1) metadata, (2) subjects of discussion, and (3) voting outcomes, totaling over 38,000 individual annotations. Released under FAIR principles and accompanied by baseline results on metadata extraction, topic classification, and vote labeling, CitiLink-Minutes demonstrates its potential for downstream NLP and IR tasks, while promoting transparent access to municipal decisions.