Information extraction is the process of automatically extracting structured information from unstructured text data.
Auditory attention decoding (AAD) identifies the attended speech stream in multi-speaker environments by decoding brain signals such as electroencephalography (EEG). This technology is essential for realizing smart hearing aids that address the cocktail party problem and for facilitating objective audiometry systems. Existing AAD research mainly utilizes dichotic environments where different speech signals are presented to the left and right ears, enabling models to classify directional attention rather than speech content. However, this spatial reliance limits applicability to real-world scenarios, such as the "cocktail party" situation, where speakers overlap or move dynamically. To address this challenge, we propose an AAD framework for diotic environments where identical speech mixtures are presented to both ears, eliminating spatial cues. Our approach maps EEG and speech signals into a shared latent space using independent encoders. We extract speech features using wav2vec 2.0 and encode them with a 2-layer 1D convolutional neural network (CNN), while employing the BrainNetwork architecture for EEG encoding. The model identifies the attended speech by calculating the cosine similarity between EEG and speech representations. We evaluate our method on a diotic EEG dataset and achieve 72.70% accuracy, which is 22.58% higher than the state-of-the-art direction-based AAD method.
Zero-shot composed image retrieval (ZS-CIR) is a rapidly growing area with significant practical applications, allowing users to retrieve a target image by providing a reference image and a relative caption describing the desired modifications. Existing ZS-CIR methods often struggle to capture fine-grained changes and integrate visual and semantic information effectively. They primarily rely on either transforming the multimodal query into a single text using image-to-text models or employing large language models for target image description generation, approaches that often fail to capture complementary visual information and complete semantic context. To address these limitations, we propose a novel Fine-Grained Zero-Shot Composed Image Retrieval method with Complementary Visual-Semantic Integration (CVSI). Specifically, CVSI leverages three key components: (1) Visual Information Extraction, which not only extracts global image features but also uses a pre-trained mapping network to convert the image into a pseudo token, combining it with the modification text and the objects most likely to be added. (2) Semantic Information Extraction, which involves using a pre-trained captioning model to generate multiple captions for the reference image, followed by leveraging an LLM to generate the modified captions and the objects most likely to be added. (3) Complementary Information Retrieval, which integrates information extracted from both the query and database images to retrieve the target image, enabling the system to efficiently handle retrieval queries in a variety of situations. Extensive experiments on three public datasets (e.g., CIRR, CIRCO, and FashionIQ) demonstrate that CVSI significantly outperforms existing state-of-the-art methods. Our code is available at https://github.com/yyc6631/CVSI.
Video summarization is a crucial technique for social understanding, enabling efficient browsing of massive multimedia content and extraction of key information from social platforms. Most existing unsupervised summarization methods rely on Generative Adversarial Networks (GANs) to enhance keyframe selection and generate coherent, video summaries through adversarial training. However, such approaches primarily exploit unimodal features, overlooking the guiding role of semantic information in keyframe selection, and often suffer from unstable training. To address these limitations, we propose a novel Semantic-Guided Unsupervised Video Summarization method. Specifically, we design a novel frame-level semantic alignment attention mechanism and integrate it into a keyframe selector, which guides the Transformer-based generator within the adversarial framework to better reconstruct videos. In addition, we adopt an incremental training strategy to progressively update the model components, effectively mitigating the instability of GAN training. Experimental results demonstrate that our approach achieves superior performance on multiple benchmark datasets.
Hallucinations in Large Language Models (LLMs) -- generations that are plausible but factually unfaithful -- remain a critical barrier to high-stakes deployment. Current detection methods typically rely on computationally expensive external retrieval loops or opaque black-box LLM judges requiring 70B+ parameters. In this work, we introduce [Model Name], a hybrid detection framework that combines neuroscience-inspired signal design with supervised machine learning. We extract interpretable signals grounded in Predictive Coding (quantifying surprise against internal priors) and the Information Bottleneck (measuring signal retention under perturbation). Through systematic ablation, we demonstrate three key enhancements: Entity-Focused Uptake (concentrating on high-value tokens), Context Adherence (measuring grounding strength), and Falsifiability Score (detecting confident but contradictory claims). Evaluating on HaluBench (n=200, perfectly balanced), our theory-guided baseline achieves 0.8017 AUROC. BASE supervised models reach 0.8274 AUROC, while IMPROVED features boost performance to 0.8669 AUROC (4.95% gain), demonstrating consistent improvements across architectures. This competitive performance is achieved while using 75x less training data than Lynx (200 vs 15,000 samples), 1000x faster inference (5ms vs 5s), and remaining fully interpretable. Crucially, we report a negative result: the Rationalization signal fails to distinguish hallucinations, suggesting that LLMs generate coherent reasoning for false premises ("Sycophancy"). This work demonstrates that domain knowledge encoded in signal architecture provides superior data efficiency compared to scaling LLM judges, achieving strong performance with lightweight (less than 1M parameter), explainable models suitable for production deployment.
Annotating medical data for training AI models is often costly and limited due to the shortage of specialists with relevant clinical expertise. This challenge is further compounded by privacy and ethical concerns associated with sensitive patient information. As a result, well-trained medical segmentation models on private datasets constitute valuable intellectual property requiring robust protection mechanisms. Existing model protection techniques primarily focus on classification and generative tasks, while segmentation models-crucial to medical image analysis-remain largely underexplored. In this paper, we propose a novel, stealthy, and harmless method, StealthMark, for verifying the ownership of medical segmentation models under black-box conditions. Our approach subtly modulates model uncertainty without altering the final segmentation outputs, thereby preserving the model's performance. To enable ownership verification, we incorporate model-agnostic explanation methods, e.g. LIME, to extract feature attributions from the model outputs. Under specific triggering conditions, these explanations reveal a distinct and verifiable watermark. We further design the watermark as a QR code to facilitate robust and recognizable ownership claims. We conducted extensive experiments across four medical imaging datasets and five mainstream segmentation models. The results demonstrate the effectiveness, stealthiness, and harmlessness of our method on the original model's segmentation performance. For example, when applied to the SAM model, StealthMark consistently achieved ASR above 95% across various datasets while maintaining less than a 1% drop in Dice and AUC scores, significantly outperforming backdoor-based watermarking methods and highlighting its strong potential for practical deployment. Our implementation code is made available at: https://github.com/Qinkaiyu/StealthMark.
Recent advances in multi-modal detection have significantly improved detection accuracy in challenging environments (e.g., low light, overexposure). By integrating RGB with modalities such as thermal and depth, multi-modal fusion increases data redundancy and system robustness. However, significant challenges remain in effectively extracting task-relevant information both within and across modalities, as well as in achieving precise cross-modal alignment. While CNNs excel at feature extraction, they are limited by constrained receptive fields, strong inductive biases, and difficulty in capturing long-range dependencies. Transformer-based models offer global context but suffer from quadratic computational complexity and are confined to pairwise correlation modeling. Mamba and other State Space Models (SSMs), on the other hand, are hindered by their sequential scanning mechanism, which flattens 2D spatial structures into 1D sequences, disrupting topological relationships and limiting the modeling of complex higher-order dependencies. To address these issues, we propose a multi-modal perception network based on hypergraph theory called M2I2HA. Our architecture includes an Intra-Hypergraph Enhancement module to capture global many-to-many high-order relationships within each modality, and an Inter-Hypergraph Fusion module to align, enhance, and fuse cross-modal features by bridging configuration and spatial gaps between data sources. We further introduce a M2-FullPAD module to enable adaptive multi-level fusion of multi-modal enhanced features within the network, meanwhile enhancing data distribution and flow across the architecture. Extensive object detection experiments on multiple public datasets against baselines demonstrate that M2I2HA achieves state-of-the-art performance in multi-modal object detection tasks.
Large Language Models (LLM) benchmarks tell us when models fail, but not why they fail. A wrong answer on a reasoning dataset may stem from formatting issues, calculation errors, or dataset noise rather than weak reasoning. Without disentangling such causes, benchmarks remain incomplete and cannot reliably guide model improvement. We introduce ErrorMap, the first method to chart the sources of LLM failure. It extracts a model's unique "failure signature", clarifies what benchmarks measure, and broadens error identification to reduce blind spots. This helps developers debug models, aligns benchmark goals with outcomes, and supports informed model selection. ErrorMap works on any model or dataset with the same logic. Applying our method to 35 datasets and 83 models we generate ErrorAtlas, a taxonomy of model errors, revealing recurring failure patterns. ErrorAtlas highlights error types that are currently underexplored in LLM research, such as omissions of required details in the output and question misinterpretation. By shifting focus from where models succeed to why they fail, ErrorMap and ErrorAtlas enable advanced evaluation - one that exposes hidden weaknesses and directs progress. Unlike success, typically measured by task-level metrics, our approach introduces a deeper evaluation layer that can be applied globally across models and tasks, offering richer insights into model behavior and limitations. We make the taxonomy and code publicly available with plans to periodically update ErrorAtlas as new benchmarks and models emerge.
The automatic extraction of information is important for populating large web knowledge bases such as Wikidata. The temporal version of that task, temporal knowledge graph extraction (TKGE), involves extracting temporally grounded facts from text, represented as semantic quadruples (subject, relation, object, timestamp). Many recent systems take advantage of large language models (LLMs), which are becoming a new cornerstone of the web due to their performance on many tasks across the natural language processing (NLP) field. Despite the importance of TKGE, existing datasets for training and evaluation remain scarce, and contamination of evaluation data is an unaddressed issue, potentially inflating LLMs' perceived performance due to overlaps between training and evaluation sets. To mitigate these challenges, we propose a novel synthetic evaluation dataset constructed from predicted future, previously unseen temporal facts, thereby eliminating contamination and enabling robust and unbiased benchmarking. Our dataset creation involves a two-step approach: (1) Temporal Knowledge Graph Forecasting (TKGF) generates plausible future quadruples, which are subsequently filtered to adhere to the original knowledge base schema; (2) LLMs perform quadruple-to-text generation, creating semantically aligned textual descriptions. We benchmark Extract, Define and Canonicalize (EDC), a state-of-the-art LLM-based extraction framework, demonstrating that LLM performance decreases when evaluated on our dataset compared to a dataset of known facts. We publicly release our dataset consisting of 4.2K future quadruples and corresponding textual descriptions, along with the generation methodology, enabling continuous creation of unlimited future temporal datasets to serve as long-term, contamination-free benchmarks for TKGE.
Motion representation plays an important role in video understanding and has many applications including action recognition, robot and autonomous guidance or others. Lately, transformer networks, through their self-attention mechanism capabilities, have proved their efficiency in many applications. In this study, we introduce a new two-stream transformer video classifier, which extracts spatio-temporal information from content and optical flow representing movement information. The proposed model identifies self-attention features across the joint optical flow and temporal frame domain and represents their relationships within the transformer encoder mechanism. The experimental results show that our proposed methodology provides excellent classification results on three well-known video datasets of human activities.
Most existing time series classification methods adopt a discriminative paradigm that maps input sequences directly to one-hot encoded class labels. While effective, this paradigm struggles to incorporate contextual features and fails to capture semantic relationships among classes. To address these limitations, we propose InstructTime, a novel framework that reformulates time series classification as a multimodal generative task. Specifically, continuous numerical sequences, contextual textual features, and task instructions are treated as multimodal inputs, while class labels are generated as textual outputs by tuned language models. To bridge the modality gap, InstructTime introduces a time series discretization module that converts continuous sequences into discrete temporal tokens, together with an alignment projection layer and a generative self-supervised pre-training strategy to enhance cross-modal representation alignment. Building upon this framework, we further propose InstructTime++, which extends InstructTime by incorporating implicit feature modeling to compensate for the limited inductive bias of language models. InstructTime++ leverages specialized toolkits to mine informative implicit patterns from raw time series and contextual inputs, including statistical feature extraction and vision-language-based image captioning, and translates them into textual descriptions for seamless integration. Extensive experiments on multiple benchmark datasets demonstrate the superior performance of InstructTime++.