Alert button
Picture for Xueqi Cheng

Xueqi Cheng

Alert button

Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue

Nov 13, 2023
Junkai Zhou, Liang Pang, Huawei Shen, Xueqi Cheng

The emergence of large language models (LLMs) further improves the capabilities of open-domain dialogue systems and can generate fluent, coherent, and diverse responses. However, LLMs still lack an important ability: communication skills, which makes them more like information seeking tools than anthropomorphic chatbots. To make LLMs more anthropomorphic and proactive during the conversation, we add five communication skills to the response generation process: topic transition, proactively asking questions, concept guidance, empathy, and summarising often. The addition of communication skills increases the interest of users in the conversation and attracts them to chat for longer. To enable LLMs better understand and use communication skills, we design and add the inner monologue to LLMs. The complete process is achieved through prompt engineering and in-context learning. To evaluate communication skills, we construct a benchmark named Cskills for evaluating various communication skills, which can also more comprehensively evaluate the dialogue generation ability of the model. Experimental results show that the proposed CSIM strategy improves the backbone models and outperforms the baselines in both automatic and human evaluations.

Viaarxiv icon

Retrieval-Augmented Code Generation for Universal Information Extraction

Nov 06, 2023
Yucan Guo, Zixuan Li, Xiaolong Jin, Yantao Liu, Yutao Zeng, Wenxuan Liu, Xiang Li, Pan Yang, Long Bai, Jiafeng Guo, Xueqi Cheng

Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework.

Viaarxiv icon

CAME: Competitively Learning a Mixture-of-Experts Model for First-stage Retrieval

Nov 06, 2023
Yinqiong Cai, Yixing Fan, Keping Bi, Jiafeng Guo, Wei Chen, Ruqing Zhang, Xueqi Cheng

The first-stage retrieval aims to retrieve a subset of candidate documents from a huge collection both effectively and efficiently. Since various matching patterns can exist between queries and relevant documents, previous work tries to combine multiple retrieval models to find as many relevant results as possible. The constructed ensembles, whether learned independently or jointly, do not care which component model is more suitable to an instance during training. Thus, they cannot fully exploit the capabilities of different types of retrieval models in identifying diverse relevance patterns. Motivated by this observation, in this paper, we propose a Mixture-of-Experts (MoE) model consisting of representative matching experts and a novel competitive learning mechanism to let the experts develop and enhance their expertise during training. Specifically, our MoE model shares the bottom layers to learn common semantic representations and uses differently structured upper layers to represent various types of retrieval experts. Our competitive learning mechanism has two stages: (1) a standardized learning stage to train the experts equally to develop their capabilities to conduct relevance matching; (2) a specialized learning stage where the experts compete with each other on every training instance and get rewards and updates according to their performance to enhance their expertise on certain types of samples. Experimental results on three retrieval benchmark datasets show that our method significantly outperforms the state-of-the-art baselines.

Viaarxiv icon

Plot Retrieval as an Assessment of Abstract Semantic Association

Nov 03, 2023
Shicheng Xu, Liang Pang, Jiangnan Li, Mo Yu, Fandong Meng, Huawei Shen, Xueqi Cheng, Jie Zhou

Retrieving relevant plots from the book for a query is a critical task, which can improve the reading experience and efficiency of readers. Readers usually only give an abstract and vague description as the query based on their own understanding, summaries, or speculations of the plot, which requires the retrieval model to have a strong ability to estimate the abstract semantic associations between the query and candidate plots. However, existing information retrieval (IR) datasets cannot reflect this ability well. In this paper, we propose Plot Retrieval, a labeled dataset to train and evaluate the performance of IR models on the novel task Plot Retrieval. Text pairs in Plot Retrieval have less word overlap and more abstract semantic association, which can reflect the ability of the IR models to estimate the abstract semantic association, rather than just traditional lexical or semantic matching. Extensive experiments across various lexical retrieval, sparse retrieval, dense retrieval, and cross-encoder methods compared with human studies on Plot Retrieval show current IR models still struggle in capturing abstract semantic association between texts. Plot Retrieval can be the benchmark for further research on the semantic association modeling ability of IR models.

Viaarxiv icon

RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder for Language Modeling

Oct 23, 2023
Jingcheng Deng, Liang Pang, Huawei Shen, Xueqi Cheng

Retrieval-augmented language models show promise in addressing issues like outdated information and hallucinations in language models (LMs). However, current research faces two main problems: 1) determining what information to retrieve, and 2) effectively combining retrieved information during generation. We argue that valuable retrieved information should not only be related to the current source text but also consider the future target text, given the nature of LMs that model future tokens. Moreover, we propose that aggregation using latent variables derived from a compact latent space is more efficient than utilizing explicit raw text, which is limited by context length and susceptible to noise. Therefore, we introduce RegaVAE, a retrieval-augmented language model built upon the variational auto-encoder (VAE). It encodes the text corpus into a latent space, capturing current and future information from both source and target text. Additionally, we leverage the VAE to initialize the latent space and adopt the probabilistic form of the retrieval generation paradigm by expanding the Gaussian prior distribution into a Gaussian mixture distribution. Theoretical analysis provides an optimizable upper bound for RegaVAE. Experimental results on various datasets demonstrate significant improvements in text generation quality and hallucination removal.

* Accepted to the Findings of EMNLP 2023 
Viaarxiv icon

An In-Context Schema Understanding Method for Knowledge Base Question Answering

Oct 22, 2023
Yantao Liu, Zixuan Li, Xiaolong Jin, Long Bai, Saiping Guan, Jiafeng Guo, Xueqi Cheng

Figure 1 for An In-Context Schema Understanding Method for Knowledge Base Question Answering
Figure 2 for An In-Context Schema Understanding Method for Knowledge Base Question Answering
Figure 3 for An In-Context Schema Understanding Method for Knowledge Base Question Answering

The Knowledge Base Question Answering (KBQA) task aims to answer natural language questions based on a given knowledge base. As a kind of common method for this task, semantic parsing-based ones first convert natural language questions to logical forms (e.g., SPARQL queries) and then execute them on knowledge bases to get answers. Recently, Large Language Models (LLMs) have shown strong abilities in language understanding and may be adopted as semantic parsers in such kinds of methods. However, in doing so, a great challenge for LLMs is to understand the schema of knowledge bases. Therefore, in this paper, we propose an In-Context Schema Understanding (ICSU) method for facilitating LLMs to be used as a semantic parser in KBQA. Specifically, ICSU adopts the In-context Learning mechanism to instruct LLMs to generate SPARQL queries with examples. In order to retrieve appropriate examples from annotated question-query pairs, which contain comprehensive schema information related to questions, ICSU explores four different retrieval strategies. Experimental results on the largest KBQA benchmark, KQA Pro, show that ICSU with all these strategies outperforms that with a random retrieval strategy significantly (from 12\% to 78.76\% in accuracy).

Viaarxiv icon

From Relevance to Utility: Evidence Retrieval with Feedback for Fact Verification

Oct 20, 2023
Hengran Zhang, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Yixing Fan, Xueqi Cheng

Figure 1 for From Relevance to Utility: Evidence Retrieval with Feedback for Fact Verification
Figure 2 for From Relevance to Utility: Evidence Retrieval with Feedback for Fact Verification
Figure 3 for From Relevance to Utility: Evidence Retrieval with Feedback for Fact Verification
Figure 4 for From Relevance to Utility: Evidence Retrieval with Feedback for Fact Verification

Retrieval-enhanced methods have become a primary approach in fact verification (FV); it requires reasoning over multiple retrieved pieces of evidence to verify the integrity of a claim. To retrieve evidence, existing work often employs off-the-shelf retrieval models whose design is based on the probability ranking principle. We argue that, rather than relevance, for FV we need to focus on the utility that a claim verifier derives from the retrieved evidence. We introduce the feedback-based evidence retriever(FER) that optimizes the evidence retrieval process by incorporating feedback from the claim verifier. As a feedback signal we use the divergence in utility between how effectively the verifier utilizes the retrieved evidence and the ground-truth evidence to produce the final claim label. Empirical studies demonstrate the superiority of FER over prevailing baselines.

* Acctepted by EMNLP 2023 Findings 
Viaarxiv icon

CIR at the NTCIR-17 ULTRE-2 Task

Oct 18, 2023
Lulu Yu, Keping Bi, Jiafeng Guo, Xueqi Cheng

Figure 1 for CIR at the NTCIR-17 ULTRE-2 Task
Figure 2 for CIR at the NTCIR-17 ULTRE-2 Task
Figure 3 for CIR at the NTCIR-17 ULTRE-2 Task

The Chinese academy of sciences Information Retrieval team (CIR) has participated in the NTCIR-17 ULTRE-2 task. This paper describes our approaches and reports our results on the ULTRE-2 task. We recognize the issue of false negatives in the Baidu search data in this competition is very severe, much more severe than position bias. Hence, we adopt the Dual Learning Algorithm (DLA) to address the position bias and use it as an auxiliary model to study how to alleviate the false negative issue. We approach the problem from two perspectives: 1) correcting the labels for non-clicked items by a relevance judgment model trained from DLA, and learn a new ranker that is initialized from DLA; 2) including random documents as true negatives and documents that have partial matching as hard negatives. Both methods can enhance the model performance and our best method has achieved nDCG@10 of 0.5355, which is 2.66% better than the best score from the organizer.

* 5 pages, 1 figure, NTCIR-17 
Viaarxiv icon