Alert button
Picture for Christian Bluethgen

Christian Bluethgen

Alert button

Clinical Text Summarization: Adapting Large Language Models Can Outperform Human Experts

Sep 14, 2023
Dave Van Veen, Cara Van Uden, Louis Blankemeier, Jean-Benoit Delbrouck, Asad Aali, Christian Bluethgen, Anuj Pareek, Malgorzata Polacin, William Collins, Neera Ahuja, Curtis P. Langlotz, Jason Hom, Sergios Gatidis, John Pauly, Akshay S. Chaudhari

Sifting through vast textual data and summarizing key information imposes a substantial burden on how clinicians allocate their time. Although large language models (LLMs) have shown immense promise in natural language processing (NLP) tasks, their efficacy across diverse clinical summarization tasks has not yet been rigorously examined. In this work, we employ domain adaptation methods on eight LLMs, spanning six datasets and four distinct summarization tasks: radiology reports, patient questions, progress notes, and doctor-patient dialogue. Our thorough quantitative assessment reveals trade-offs between models and adaptation methods in addition to instances where recent advances in LLMs may not lead to improved results. Further, in a clinical reader study with six physicians, we depict that summaries from the best adapted LLM are preferable to human summaries in terms of completeness and correctness. Our ensuing qualitative analysis delineates mutual challenges faced by both LLMs and human experts. Lastly, we correlate traditional quantitative NLP metrics with reader study scores to enhance our understanding of how these metrics align with physician preferences. Our research marks the first evidence of LLMs outperforming human experts in clinical text summarization across multiple tasks. This implies that integrating LLMs into clinical workflows could alleviate documentation burden, empowering clinicians to focus more on personalized patient care and other irreplaceable human aspects of medicine.

* 23 pages, 22 figures 
Viaarxiv icon

Exploring the Versatility of Zero-Shot CLIP for Interstitial Lung Disease Classification

Jun 01, 2023
Cara Van Uden, Christian Bluethgen, Maayane Attias, Malgorzata Polacin, Haiwei Henry Guo, Neha Simha, Rishi Raj, Curtis Langlotz

Figure 1 for Exploring the Versatility of Zero-Shot CLIP for Interstitial Lung Disease Classification
Figure 2 for Exploring the Versatility of Zero-Shot CLIP for Interstitial Lung Disease Classification
Figure 3 for Exploring the Versatility of Zero-Shot CLIP for Interstitial Lung Disease Classification
Figure 4 for Exploring the Versatility of Zero-Shot CLIP for Interstitial Lung Disease Classification

Interstitial lung diseases (ILD) present diagnostic challenges due to their varied manifestations and overlapping imaging features. To address this, we propose a machine learning approach that utilizes CLIP, a multimodal (image and text) self-supervised model, for ILD classification. We extensively integrate zero-shot CLIP throughout our workflow, starting from the initial extraction of image patches from volumetric CT scans and proceeding to ILD classification using "patch montages". Furthermore, we investigate how domain adaptive pretraining (DAPT) CLIP with task-specific images (CT "patch montages" extracted with ILD-specific prompts for CLIP) and/or text (lung-specific sections of radiology reports) affects downstream ILD classification performance. By leveraging CLIP-extracted "patch montages" and DAPT, we achieve strong zero-shot ILD classification results, including an AUROC of 0.893, without the need for any labeled training data. This work highlights the versatility and potential of multimodal models like CLIP for medical image classification tasks where labeled data is scarce.

* 11 pages, 11 figures 
Viaarxiv icon

GenerateCT: Text-Guided 3D Chest CT Generation

May 26, 2023
Ibrahim Ethem Hamamci, Sezgin Er, Enis Simsar, Alperen Tezcan, Ayse Gulnihan Simsek, Furkan Almas, Sevval Nil Esirgun, Hadrien Reynaud, Sarthak Pati, Christian Bluethgen, Bjoern Menze

Figure 1 for GenerateCT: Text-Guided 3D Chest CT Generation
Figure 2 for GenerateCT: Text-Guided 3D Chest CT Generation
Figure 3 for GenerateCT: Text-Guided 3D Chest CT Generation
Figure 4 for GenerateCT: Text-Guided 3D Chest CT Generation

Generative modeling has experienced substantial progress in recent years, particularly in text-to-image and text-to-video synthesis. However, the medical field has not yet fully exploited the potential of large-scale foundational models for synthetic data generation. In this paper, we introduce GenerateCT, the first method for text-conditional computed tomography (CT) generation, addressing the limitations in 3D medical imaging research and making our entire framework open-source. GenerateCT consists of a pre-trained large language model, a transformer-based text-conditional 3D chest CT generation architecture, and a text-conditional spatial super-resolution diffusion model. We also propose CT-ViT, which efficiently compresses CT volumes while preserving auto-regressiveness in-depth, enabling the generation of 3D CT volumes with variable numbers of axial slices. Our experiments demonstrate that GenerateCT can produce realistic, high-resolution, and high-fidelity 3D chest CT volumes consistent with medical language text prompts. We further investigate the potential of GenerateCT by training a model using generated CT volumes for multi-abnormality classification of chest CT volumes. Our contributions provide a valuable foundation for future research in text-conditional 3D medical image generation and have the potential to accelerate advancements in medical imaging research. Our code, pre-trained models, and generated data are available at https://github.com/ibrahimethemhamamci/GenerateCT.

Viaarxiv icon

RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models

May 02, 2023
Dave Van Veen, Cara Van Uden, Maayane Attias, Anuj Pareek, Christian Bluethgen, Malgorzata Polacin, Wah Chiu, Jean-Benoit Delbrouck, Juan Manuel Zambrano Chaves, Curtis P. Langlotz, Akshay S. Chaudhari, John Pauly

Figure 1 for RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models
Figure 2 for RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models
Figure 3 for RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models
Figure 4 for RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models

We systematically investigate lightweight strategies to adapt large language models (LLMs) for the task of radiology report summarization (RRS). Specifically, we focus on domain adaptation via pretraining (on natural language, biomedical text, and clinical text) and via prompting (zero-shot, in-context learning) or parameter-efficient fine-tuning (prefix tuning, LoRA). Our results on the MIMIC-III dataset consistently demonstrate best performance by maximally adapting to the task via pretraining on clinical text and parameter-efficient fine-tuning on RRS examples. Importantly, this method fine-tunes a mere 0.32% of parameters throughout the model, in contrast to end-to-end fine-tuning (100% of parameters). Additionally, we study the effect of in-context examples and out-of-distribution (OOD) training before concluding with a radiologist reader study and qualitative analysis. Our findings highlight the importance of domain adaptation in RRS and provide valuable insights toward developing effective natural language processing solutions for clinical tasks.

* 12 pages, 9 figures 
Viaarxiv icon

RoentGen: Vision-Language Foundation Model for Chest X-ray Generation

Nov 23, 2022
Pierre Chambon, Christian Bluethgen, Jean-Benoit Delbrouck, Rogier Van der Sluijs, Małgorzata Połacin, Juan Manuel Zambrano Chaves, Tanishq Mathew Abraham, Shivanshu Purohit, Curtis P. Langlotz, Akshay Chaudhari

Figure 1 for RoentGen: Vision-Language Foundation Model for Chest X-ray Generation
Figure 2 for RoentGen: Vision-Language Foundation Model for Chest X-ray Generation
Figure 3 for RoentGen: Vision-Language Foundation Model for Chest X-ray Generation
Figure 4 for RoentGen: Vision-Language Foundation Model for Chest X-ray Generation

Multimodal models trained on large natural image-text pair datasets have exhibited astounding abilities in generating high-quality images. Medical imaging data is fundamentally different to natural images, and the language used to succinctly capture relevant details in medical data uses a different, narrow but semantically rich, domain-specific vocabulary. Not surprisingly, multi-modal models trained on natural image-text pairs do not tend to generalize well to the medical domain. Developing generative imaging models faithfully representing medical concepts while providing compositional diversity could mitigate the existing paucity of high-quality, annotated medical imaging datasets. In this work, we develop a strategy to overcome the large natural-medical distributional shift by adapting a pre-trained latent diffusion model on a corpus of publicly available chest x-rays (CXR) and their corresponding radiology (text) reports. We investigate the model's ability to generate high-fidelity, diverse synthetic CXR conditioned on text prompts. We assess the model outputs quantitatively using image quality metrics, and evaluate image quality and text-image alignment by human domain experts. We present evidence that the resulting model (RoentGen) is able to create visually convincing, diverse synthetic CXR images, and that the output can be controlled to a new extent by using free-form text prompts including radiology-specific language. Fine-tuning this model on a fixed training set and using it as a data augmentation method, we measure a 5% improvement of a classifier trained jointly on synthetic and real images, and a 3% improvement when trained on a larger but purely synthetic training set. Finally, we observe that this fine-tuning distills in-domain knowledge in the text-encoder and can improve its representation capabilities of certain diseases like pneumothorax by 25%.

* 19 pages 
Viaarxiv icon

Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate Networks

Oct 18, 2022
Dave Van Veen, Rogier van der Sluijs, Batu Ozturkler, Arjun Desai, Christian Bluethgen, Robert D. Boutin, Marc H. Willis, Gordon Wetzstein, David Lindell, Shreyas Vasanawala, John Pauly, Akshay S. Chaudhari

Figure 1 for Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate Networks
Figure 2 for Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate Networks
Figure 3 for Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate Networks
Figure 4 for Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate Networks

We propose using a coordinate network decoder for the task of super-resolution in MRI. The continuous signal representation of coordinate networks enables this approach to be scale-agnostic, i.e. one can train over a continuous range of scales and subsequently query at arbitrary resolutions. Due to the difficulty of performing super-resolution on inherently noisy data, we analyze network behavior under multiple denoising strategies. Lastly we compare this method to a standard convolutional decoder using both quantitative metrics and a radiologist study implemented in Voxel, our newly developed tool for web-based evaluation of medical images.

* Medical Imaging with Deep Learning. 2022  
Viaarxiv icon

Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains

Oct 09, 2022
Pierre Chambon, Christian Bluethgen, Curtis P. Langlotz, Akshay Chaudhari

Figure 1 for Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains
Figure 2 for Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains
Figure 3 for Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains
Figure 4 for Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains

Multi-modal foundation models are typically trained on millions of pairs of natural images and text captions, frequently obtained through web-crawling approaches. Although such models depict excellent generative capabilities, they do not typically generalize well to specific domains such as medical images that have fundamentally shifted distributions compared to natural images. Building generative models for medical images that faithfully depict clinical context may help alleviate the paucity of healthcare datasets. Thus, in this study, we seek to research and expand the representational capabilities of large pretrained foundation models to medical concepts, specifically for leveraging the Stable Diffusion model to generate domain specific images found in medical imaging. We explore the sub-components of the Stable Diffusion pipeline (the variational autoencoder, the U-Net and the text-encoder) to fine-tune the model to generate medical images. We benchmark the efficacy of these efforts using quantitative image quality metrics and qualitative radiologist-driven evaluations that accurately represent the clinical content of conditional text prompts. Our best-performing model improves upon the stable diffusion baseline and can be conditioned to insert a realistic-looking abnormality on a synthetic radiology image, while maintaining a 95% accuracy on a classifier trained to detect the abnormality.

* 17 pages, 8 figures 
Viaarxiv icon