Topic:Photoplethysmography
What is Photoplethysmography? Photoplethysmography (PPG) is a non-invasive optical technique used to measure blood volume changes in the microvascular bed of tissue.
Papers and Code
May 08, 2025
Abstract:Smart rings offer a convenient way to continuously and unobtrusively monitor cardiovascular physiological signals. However, a gap remains between the ring hardware and reliable methods for estimating cardiovascular parameters, partly due to the lack of publicly available datasets and standardized analysis tools. In this work, we present $\tau$-Ring, the first open-source ring-based dataset designed for cardiovascular physiological sensing. The dataset comprises photoplethysmography signals (infrared and red channels) and 3-axis accelerometer data collected from two rings (reflective and transmissive optical paths), with 28.21 hours of raw data from 34 subjects across seven activities. $\tau$-Ring encompasses both stationary and motion scenarios, as well as stimulus-evoked abnormal physiological states, annotated with four ground-truth labels: heart rate, respiratory rate, oxygen saturation, and blood pressure. Using our proposed RingTool toolkit, we evaluated three widely-used physics-based methods and four cutting-edge deep learning approaches. Our results show superior performance compared to commercial rings, achieving best MAE values of 5.18 BPM for heart rate, 2.98 BPM for respiratory rate, 3.22\% for oxygen saturation, and 13.33/7.56 mmHg for systolic/diastolic blood pressure estimation. The open-sourced dataset and toolkit aim to foster further research and community-driven advances in ring-based cardiovascular health sensing.
Via

May 06, 2025
Abstract:Remote photoplethysmography (rPPG) enables non-contact physiological measurement but remains highly susceptible to illumination changes, motion artifacts, and limited temporal modeling. Large Language Models (LLMs) excel at capturing long-range dependencies, offering a potential solution but struggle with the continuous, noise-sensitive nature of rPPG signals due to their text-centric design. To bridge this gap, we introduce PhysLLM, a collaborative optimization framework that synergizes LLMs with domain-specific rPPG components. Specifically, the Text Prototype Guidance (TPG) strategy is proposed to establish cross-modal alignment by projecting hemodynamic features into LLM-interpretable semantic space, effectively bridging the representational gap between physiological signals and linguistic tokens. Besides, a novel Dual-Domain Stationary (DDS) Algorithm is proposed for resolving signal instability through adaptive time-frequency domain feature re-weighting. Finally, rPPG task-specific cues systematically inject physiological priors through physiological statistics, environmental contextual answering, and task description, leveraging cross-modal learning to integrate both visual and textual information, enabling dynamic adaptation to challenging scenarios like variable illumination and subject movements. Evaluation on four benchmark datasets, PhysLLM achieves state-of-the-art accuracy and robustness, demonstrating superior generalization across lighting variations and motion scenarios.
Via

May 06, 2025
Abstract:3D mask presentation attack detection is crucial for protecting face recognition systems against the rising threat of 3D mask attacks. While most existing methods utilize multimodal features or remote photoplethysmography (rPPG) signals to distinguish between real faces and 3D masks, they face significant challenges, such as the high costs associated with multimodal sensors and limited generalization ability. Detection-related text descriptions offer concise, universal information and are cost-effective to obtain. However, the potential of vision-language multimodal features for 3D mask presentation attack detection remains unexplored. In this paper, we propose a novel knowledge-based prompt learning framework to explore the strong generalization capability of vision-language models for 3D mask presentation attack detection. Specifically, our approach incorporates entities and triples from knowledge graphs into the prompt learning process, generating fine-grained, task-specific explicit prompts that effectively harness the knowledge embedded in pre-trained vision-language models. Furthermore, considering different input images may emphasize distinct knowledge graph elements, we introduce a visual-specific knowledge filter based on an attention mechanism to refine relevant elements according to the visual context. Additionally, we leverage causal graph theory insights into the prompt learning process to further enhance the generalization ability of our method. During training, a spurious correlation elimination paradigm is employed, which removes category-irrelevant local image patches using guidance from knowledge-based text features, fostering the learning of generalized causal prompts that align with category-relevant local patches. Experimental results demonstrate that the proposed method achieves state-of-the-art intra- and cross-scenario detection performance on benchmark datasets.
Via

May 02, 2025
Abstract:Camera-based monitoring of Pulse Rate (PR) enables continuous and unobtrusive assessment of driver's state, allowing estimation of fatigue or stress that could impact traffic safety. Commonly used wearable Photoplethysmography (PPG) sensors, while effective, suffer from motion artifacts and user discomfort. This study explores the feasibility of non-contact PR assessment using facial video recordings captured by a Red, Green, and Blue (RGB) camera in a driving simulation environment. The proposed approach detects subtle skin color variations due to blood flow and compares extracted PR values against reference measurements from a wearable wristband Empatica E4. We evaluate the impact of Eulerian Video Magnification (EVM) on signal quality and assess statistical differences in PR between age groups. Data obtained from 80 recordings from 64 healthy subjects covering a PR range of 45-160 bpm are analyzed, and signal extraction accuracy is quantified using metrics, such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Results show that EVM slightly improves PR estimation accuracy, reducing MAE from 6.48 bpm to 5.04 bpm and RMSE from 7.84 bpm to 6.38 bpm. A statistically significant difference is found between older and younger groups with both video-based and ground truth evaluation procedures. Additionally, we discuss Empatica E4 bias and its potential impact on the overall assessment of contact measurements. Altogether the findings demonstrate the feasibility of camera-based PR monitoring in dynamic environments and its potential integration into driving simulators for real-time physiological assessment.
* 6 figures and one table
Via

Apr 29, 2025
Abstract:Artefacts compromise clinical decision-making in the use of medical time series. Pulsatile waveforms offer probabilities for accurate artefact detection, yet most approaches rely on supervised manners and overlook patient-level distribution shifts. To address these issues, we introduce a generalised label-free framework, GenClean, for real-time artefact cleaning and leverage an in-house dataset of 180,000 ten-second arterial blood pressure (ABP) samples for training. We first investigate patient-level generalisation, demonstrating robust performances under both intra- and inter-patient distribution shifts. We further validate its effectiveness through challenging cross-disease cohort experiments on the MIMIC-III database. Additionally, we extend our method to photoplethysmography (PPG), highlighting its applicability to diverse medical pulsatile signals. Finally, its integration into ICM+, a clinical research monitoring software, confirms the real-time feasibility of our framework, emphasising its practical utility in continuous physiological monitoring. This work provides a foundational step toward precision medicine in improving the reliability of high-resolution medical time series analysis
Via

Apr 23, 2025
Abstract:Psychological counseling is a highly personalized and dynamic process that requires therapists to continuously monitor emotional changes, document session insights, and maintain therapeutic continuity. In this paper, we introduce PsyCounAssist, a comprehensive AI-powered counseling assistant system specifically designed to augment psychological counseling practices. PsyCounAssist integrates multimodal emotion recognition combining speech and photoplethysmography (PPG) signals for accurate real-time affective analysis, automated structured session reporting using large language models (LLMs), and personalized AI-generated follow-up support. Deployed on Android-based tablet devices, the system demonstrates practical applicability and flexibility in real-world counseling scenarios. Experimental evaluation confirms the reliability of PPG-based emotional classification and highlights the system's potential for non-intrusive, privacy-aware emotional support. PsyCounAssist represents a novel approach to ethically and effectively integrating AI into psychological counseling workflows.
Via

Apr 04, 2025
Abstract:Remote photoplethysmography (rPPG) technology infers heart rate by capturing subtle color changes in facial skin using a camera, demonstrating great potential in non-contact heart rate measurement. However, measurement accuracy significantly decreases in complex scenarios such as lighting changes and head movements compared to ideal laboratory conditions. Existing deep learning models often neglect the quantification of measurement uncertainty, limiting their credibility in dynamic scenes. To address the issue of insufficient rPPG measurement reliability in complex scenarios, this paper introduces Bayesian neural networks to the rPPG field for the first time, proposing the Robust Fusion Bayesian Physiological Network (RF-BayesPhysNet), which can model both aleatoric and epistemic uncertainty. It leverages variational inference to balance accuracy and computational efficiency. Due to the current lack of uncertainty estimation metrics in the rPPG field, this paper also proposes a new set of methods, using Spearman correlation coefficient, prediction interval coverage, and confidence interval width, to measure the effectiveness of uncertainty estimation methods under different noise conditions. Experiments show that the model, with only double the parameters compared to traditional network models, achieves a MAE of 2.56 on the UBFC-RPPG dataset, surpassing most models. It demonstrates good uncertainty estimation capability in no-noise and low-noise conditions, providing prediction confidence and significantly enhancing robustness in real-world applications. We have open-sourced the code at https://github.com/AIDC-rPPG/RF-Net
* 11 pages, 4 figures
Via

Apr 03, 2025
Abstract:Photoplethysmography (PPG) is a widely used non-invasive technique for monitoring cardiovascular health and various physiological parameters on consumer and medical devices. While motion artifacts are well-known challenges in dynamic settings, suboptimal skin-sensor contact in sedentary conditions - a critical issue often overlooked in existing literature - can distort PPG signal morphology, leading to the loss or shift of essential waveform features and therefore degrading sensing performance. In this work, we propose CP-PPG, a novel approach that transforms Contact Pressure-distorted PPG signals into ones with the ideal morphology. CP-PPG incorporates a novel data collection approach, a well-crafted signal processing pipeline, and an advanced deep adversarial model trained with a custom PPG-aware loss function. We validated CP-PPG through comprehensive evaluations, including 1) morphology transformation performance on our self-collected dataset, 2) downstream physiological monitoring performance on public datasets, and 3) in-the-wild performance. Extensive experiments demonstrate substantial and consistent improvements in signal fidelity (Mean Absolute Error: 0.09, 40% improvement over the original signal) as well as downstream performance across all evaluations in Heart Rate (HR), Heart Rate Variability (HRV), Respiration Rate (RR), and Blood Pressure (BP) estimation (on average, 21% improvement in HR; 41-46% in HRV; 6% in RR; and 4-5% in BP). These findings highlight the critical importance of addressing skin-sensor contact issues for accurate and dependable PPG-based physiological monitoring. Furthermore, CP-PPG can serve as a generic, plug-in API to enhance PPG signal quality.
Via

Apr 02, 2025
Abstract:Remote photoplethysmography (rPPG), enabling non-contact physiological monitoring through facial light reflection analysis, faces critical computational bottlenecks as deep learning introduces performance gains at the cost of prohibitive resource demands. This paper proposes ME-rPPG, a memory-efficient algorithm built on temporal-spatial state space duality, which resolves the trilemma of model scalability, cross-dataset generalization, and real-time constraints. Leveraging a transferable state space, ME-rPPG efficiently captures subtle periodic variations across facial frames while maintaining minimal computational overhead, enabling training on extended video sequences and supporting low-latency inference. Achieving cross-dataset MAEs of 5.38 (MMPD), 0.70 (VitalVideo), and 0.25 (PURE), ME-rPPG outperforms all baselines with improvements ranging from 21.3% to 60.2%. Our solution enables real-time inference with only 3.6 MB memory usage and 9.46 ms latency -- surpassing existing methods by 19.5%-49.7% accuracy and 43.2% user satisfaction gains in real-world deployments. The code and demos are released for reproducibility on https://github.com/Health-HCI-Group/ME-rPPG-demo.
Via

Apr 01, 2025
Abstract:Remote photoplethysmography (rPPG) offers a novel approach to noninvasive monitoring of vital signs, such as respiratory rate, utilizing a camera. Although several supervised and self-supervised methods have been proposed, they often fail to accurately reconstruct the PPG signal, particularly in distinguishing between systolic and diastolic components. Their primary focus tends to be solely on extracting heart rate, which may not accurately represent the complete PPG signal. To address this limitation, this paper proposes a novel deep learning architecture using Generative Adversarial Networks by introducing multi-discriminators to extract rPPG signals from facial videos. These discriminators focus on the time domain, the frequency domain, and the second derivative of the original time domain signal. The discriminator integrates four loss functions: variance loss to mitigate local minima caused by noise; dynamic time warping loss to address local minima induced by alignment and sequences of variable lengths; Sparsity Loss for heart rate adjustment, and Variance Loss to ensure a uniform distribution across the desired frequency domain and time interval between systolic and diastolic phases of the PPG signal.
Via
