Continual learning aims to empower artificial intelligence (AI) with strong adaptability to the real world. For this purpose, a desirable solution should properly balance memory stability with learning plasticity, and acquire sufficient compatibility to capture the observed distributions. Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting, but remain difficult to flexibly accommodate incremental changes as biological intelligence (BI) does. By modeling a robust Drosophila learning system that actively regulates forgetting with multiple learning modules, here we propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity, and accordingly coordinates a multi-learner architecture to ensure solution compatibility. Through extensive theoretical and empirical validation, our approach not only clearly enhances the performance of continual learning, especially over synaptic regularization methods in task-incremental settings, but also potentially advances the understanding of neurological adaptive mechanisms, serving as a novel paradigm to progress AI and BI together.
The goal of continual learning is to improve the performance of recognition models in learning sequentially arrived data. Although most existing works are established on the premise of learning from scratch, growing efforts have been devoted to incorporating the benefits of pre-training. However, how to adaptively exploit the pre-trained knowledge for each incremental task while maintaining its generalizability remains an open question. In this work, we present an extensive analysis for continual learning on a pre-trained model (CLPM), and attribute the key challenge to a progressive overfitting problem. Observing that selectively reducing the learning rate can almost resolve this issue in the representation layer, we propose a simple but extremely effective approach named Slow Learner with Classifier Alignment (SLCA), which further improves the classification layer by modeling the class-wise distributions and aligning the classification layers in a post-hoc fashion. Across a variety of scenarios, our proposal provides substantial improvements for CLPM (e.g., up to 49.76%, 50.05%, 44.69% and 40.16% on Split CIFAR-100, Split ImageNet-R, Split CUB-200 and Split Cars-196, respectively), and thus outperforms state-of-the-art approaches by a large margin. Based on such a strong baseline, critical factors and promising directions are analyzed in-depth to facilitate subsequent research.
To cope with real-world dynamics, an intelligent agent needs to incrementally acquire, update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as continual learning, provides a foundation for AI systems to develop themselves adaptively. In a general sense, continual learning is explicitly limited by catastrophic forgetting, where learning a new task usually results in a dramatic performance drop of the old tasks. Beyond this, increasingly numerous advances have emerged in recent years that largely extend the understanding and application of continual learning. The growing and widespread interest in this direction demonstrates its realistic significance as well as complexity. In this work, we present a comprehensive survey of continual learning, seeking to bridge the basic settings, theoretical foundations, representative methods, and practical applications. Based on existing theoretical and empirical results, we summarize the general objectives of continual learning as ensuring a proper stability-plasticity trade-off and an adequate intra/inter-task generalizability in the context of resource efficiency. Then we provide a state-of-the-art and elaborated taxonomy, extensively analyzing how representative strategies address continual learning, and how they are adapted to particular challenges in various applications. Through an in-depth discussion of continual learning in terms of the current trends, cross-directional prospects and interdisciplinary connections with neuroscience, we believe that such a holistic perspective can greatly facilitate subsequent exploration in this field and beyond.
Solving partial differential equations (PDEs) is an important research means in the fields of physics, biology, and chemistry. As an approximate alternative to numerical methods, PINN has received extensive attention and played an important role in many fields. However, PINN uses a fully connected network as its model, which has limited fitting ability and limited extrapolation ability in both time and space. In this paper, we propose PhyGNNet for solving partial differential equations on the basics of a graph neural network which consists of encoder, processer, and decoder blocks. In particular, we divide the computing area into regular grids, define partial differential operators on the grids, then construct pde loss for the network to optimize to build PhyGNNet model. What's more, we conduct comparative experiments on Burgers equation and heat equation to validate our approach, the results show that our method has better fit ability and extrapolation ability both in time and spatial areas compared with PINN.
Continual learning requires incremental compatibility with a sequence of tasks. However, the design of model architecture remains an open question: In general, learning all tasks with a shared set of parameters suffers from severe interference between tasks; while learning each task with a dedicated parameter subspace is limited by scalability. In this work, we theoretically analyze the generalization errors for learning plasticity and memory stability in continual learning, which can be uniformly upper-bounded by (1) discrepancy between task distributions, (2) flatness of loss landscape and (3) cover of parameter space. Then, inspired by the robust biological learning system that processes sequential experiences with multiple parallel compartments, we propose Cooperation of Small Continual Learners (CoSCL) as a general strategy for continual learning. Specifically, we present an architecture with a fixed number of narrower sub-networks to learn all incremental tasks in parallel, which can naturally reduce the two errors through improving the three components of the upper bound. To strengthen this advantage, we encourage to cooperate these sub-networks by penalizing the difference of predictions made by their feature representations. With a fixed parameter budget, CoSCL can improve a variety of representative continual learning approaches by a large margin (e.g., up to 10.64% on CIFAR-100-SC, 9.33% on CIFAR-100-RS, 11.45% on CUB-200-2011 and 6.72% on Tiny-ImageNet) and achieve the new state-of-the-art performance.
Continual learning needs to overcome catastrophic forgetting of the past. Memory replay of representative old training samples has been shown as an effective solution, and achieves the state-of-the-art (SOTA) performance. However, existing work is mainly built on a small memory buffer containing a few original data, which cannot fully characterize the old data distribution. In this work, we propose memory replay with data compression (MRDC) to reduce the storage cost of old training samples and thus increase their amount that can be stored in the memory buffer. Observing that the trade-off between the quality and quantity of compressed data is highly nontrivial for the efficacy of memory replay, we propose a novel method based on determinantal point processes (DPPs) to efficiently determine an appropriate compression quality for currently-arrived training samples. In this way, using a naive data compression algorithm with a properly selected quality can largely boost recent strong baselines by saving more compressed data in a limited storage space. We extensively validate this across several benchmarks of class-incremental learning and in a realistic scenario of object detection for autonomous driving.
Continual learning aims to learn a sequence of tasks from dynamic data distributions. Without accessing to the old training samples, knowledge transfer from the old tasks to each new task is difficult to determine, which might be either positive or negative. If the old knowledge interferes with the learning of a new task, i.e., the forward knowledge transfer is negative, then precisely remembering the old tasks will further aggravate the interference, thus decreasing the performance of continual learning. By contrast, biological neural networks can actively forget the old knowledge that conflicts with the learning of a new experience, through regulating the learning-triggered synaptic expansion and synaptic convergence. Inspired by the biological active forgetting, we propose to actively forget the old knowledge that limits the learning of new tasks to benefit continual learning. Under the framework of Bayesian continual learning, we develop a novel approach named Active Forgetting with synaptic Expansion-Convergence (AFEC). Our method dynamically expands parameters to learn each new task and then selectively combines them, which is formally consistent with the underlying mechanism of biological active forgetting. We extensively evaluate AFEC on a variety of continual learning benchmarks, including CIFAR-10 regression tasks, visual classification tasks and Atari reinforcement tasks, where AFEC effectively improves the learning of new tasks and achieves the state-of-the-art performance in a plug-and-play way.
It is an important yet challenging setting to continually learn new tasks from a few examples. Although numerous efforts have been devoted to either continual learning or few-shot learning, little work has considered this new setting of few-shot continual learning (FSCL), which needs to minimize the catastrophic forgetting to the old tasks and gradually improve the ability of few-shot generalization. In this paper, we provide a first systematic study on FSCL and present an effective solution with deep neural networks. Our solution is based on the observation that continual learning of a task sequence inevitably interferes few-shot generalization, which makes it highly nontrivial to extend few-shot learning strategies to continual learning scenarios. We draw inspirations from the robust brain system and develop a method that (1) interdependently updates a pair of fast / slow weights for continual learning and few-shot learning to disentangle their divergent objectives, inspired by the biological model of meta-plasticity and fast / slow synapse; and (2) applies a brain-inspired two-step consolidation strategy to learn a task sequence without forgetting in the fast weights while improve generalization without overfitting in the slow weights. Extensive results on various benchmarks show that our method achieves a better performance than joint training of all the tasks ever seen. The ability of few-shot generalization is also substantially improved from incoming tasks and examples.