Tsinghua University




Abstract:Large vision-language models (LVLMs) enable autonomous mobile agents to operate smartphone user interfaces, yet vulnerabilities to UI-level attacks remain critically understudied. Existing research often depends on conspicuous UI overlays, elevated permissions, or impractical threat models, limiting stealth and real-world applicability. In this paper, we present a practical and stealthy one-shot jailbreak attack that leverages in-app prompt injections: malicious applications embed short prompts in UI text that remain inert during human interaction but are revealed when an agent drives the UI via ADB (Android Debug Bridge). Our framework comprises three crucial components: (1) low-privilege perception-chain targeting, which injects payloads into malicious apps as the agent's visual inputs; (2) stealthy user-invisible activation, a touch-based trigger that discriminates agent from human touches using physical touch attributes and exposes the payload only during agent operation; and (3) one-shot prompt efficacy, a heuristic-guided, character-level iterative-deepening search algorithm (HG-IDA*) that performs one-shot, keyword-level detoxification to evade on-device safety filters. We evaluate across multiple LVLM backends, including closed-source services and representative open-source models within three Android applications, and we observe high planning and execution hijack rates in single-shot scenarios (e.g., GPT-4o: 82.5% planning / 75.0% execution). These findings expose a fundamental security vulnerability in current mobile agents with immediate implications for autonomous smartphone operation.
Abstract:Online reinforcement learning (RL) has been central to post-training language models, but its extension to diffusion models remains challenging due to intractable likelihoods. Recent works discretize the reverse sampling process to enable GRPO-style training, yet they inherit fundamental drawbacks, including solver restrictions, forward-reverse inconsistency, and complicated integration with classifier-free guidance (CFG). We introduce Diffusion Negative-aware FineTuning (DiffusionNFT), a new online RL paradigm that optimizes diffusion models directly on the forward process via flow matching. DiffusionNFT contrasts positive and negative generations to define an implicit policy improvement direction, naturally incorporating reinforcement signals into the supervised learning objective. This formulation enables training with arbitrary black-box solvers, eliminates the need for likelihood estimation, and requires only clean images rather than sampling trajectories for policy optimization. DiffusionNFT is up to $25\times$ more efficient than FlowGRPO in head-to-head comparisons, while being CFG-free. For instance, DiffusionNFT improves the GenEval score from 0.24 to 0.98 within 1k steps, while FlowGRPO achieves 0.95 with over 5k steps and additional CFG employment. By leveraging multiple reward models, DiffusionNFT significantly boosts the performance of SD3.5-Medium in every benchmark tested.
Abstract:Despite their widespread success, deep neural networks remain critically vulnerable to adversarial attacks, posing significant risks in safety-sensitive applications. This paper investigates activation functions as a crucial yet underexplored component for enhancing model robustness. We propose a Rademacher Complexity Reduction Activation Function (RCR-AF), a novel activation function designed to improve both generalization and adversarial resilience. RCR-AF uniquely combines the advantages of GELU (including smoothness, gradient stability, and negative information retention) with ReLU's desirable monotonicity, while simultaneously controlling both model sparsity and capacity through built-in clipping mechanisms governed by two hyperparameters, $\alpha$ and $\gamma$. Our theoretical analysis, grounded in Rademacher complexity, demonstrates that these parameters directly modulate the model's Rademacher complexity, offering a principled approach to enhance robustness. Comprehensive empirical evaluations show that RCR-AF consistently outperforms widely-used alternatives (ReLU, GELU, and Swish) in both clean accuracy under standard training and in adversarial robustness within adversarial training paradigms.
Abstract:Gradient-based adversarial attacks using the Cross-Entropy (CE) loss often suffer from overestimation due to relative errors in gradient computation induced by floating-point arithmetic. This paper provides a rigorous theoretical analysis of these errors, conducting the first comprehensive study of floating-point computation errors in gradient-based attacks across four distinct scenarios: (i) unsuccessful untargeted attacks, (ii) successful untargeted attacks, (iii) unsuccessful targeted attacks, and (iv) successful targeted attacks. We establish theoretical foundations characterizing the behavior of relative numerical errors under different attack conditions, revealing previously unknown patterns in gradient computation instability, and identify floating-point underflow and rounding as key contributors. Building on this insight, we propose the Theoretical MIFPE (T-MIFPE) loss function, which incorporates an optimal scaling factor $T = t^*$ to minimize the impact of floating-point errors, thereby enhancing the accuracy of gradient computation in adversarial attacks. Extensive experiments on the MNIST, CIFAR-10, and CIFAR-100 datasets demonstrate that T-MIFPE outperforms existing loss functions, including CE, C\&W, DLR, and MIFPE, in terms of attack potency and robustness evaluation accuracy.
Abstract:Implicit Neural representations (INRs) have emerged as a promising approach for video compression, and have achieved comparable performance to the state-of-the-art codecs such as H.266/VVC. However, existing INR-based methods struggle to effectively represent detail-intensive and fast-changing video content. This limitation mainly stems from the underutilization of internal network features and the absence of video-specific considerations in network design. To address these challenges, we propose a multi-scale feature fusion framework, MSNeRV, for neural video representation. In the encoding stage, we enhance temporal consistency by employing temporal windows, and divide the video into multiple Groups of Pictures (GoPs), where a GoP-level grid is used for background representation. Additionally, we design a multi-scale spatial decoder with a scale-adaptive loss function to integrate multi-resolution and multi-frequency information. To further improve feature extraction, we introduce a multi-scale feature block that fully leverages hidden features. We evaluate MSNeRV on HEVC ClassB and UVG datasets for video representation and compression. Experimental results demonstrate that our model exhibits superior representation capability among INR-based approaches and surpasses VTM-23.7 (Random Access) in dynamic scenarios in terms of compression efficiency.
Abstract:Recent advancements in multimodal large language models for video understanding (videoLLMs) have improved their ability to process dynamic multimodal data. However, trustworthiness challenges factual inaccuracies, harmful content, biases, hallucinations, and privacy risks, undermine reliability due to video data's spatiotemporal complexities. This study introduces Trust-videoLLMs, a comprehensive benchmark evaluating videoLLMs across five dimensions: truthfulness, safety, robustness, fairness, and privacy. Comprising 30 tasks with adapted, synthetic, and annotated videos, the framework assesses dynamic visual scenarios, cross-modal interactions, and real-world safety concerns. Our evaluation of 23 state-of-the-art videoLLMs (5 commercial,18 open-source) reveals significant limitations in dynamic visual scene understanding and cross-modal perturbation resilience. Open-source videoLLMs show occasional truthfulness advantages but inferior overall credibility compared to commercial models, with data diversity outperforming scale effects. These findings highlight the need for advanced safety alignment to enhance capabilities. Trust-videoLLMs provides a publicly available, extensible toolbox for standardized trustworthiness assessments, bridging the gap between accuracy-focused benchmarks and critical demands for robustness, safety, fairness, and privacy.
Abstract:Unsupervised Domain Adaptation (UDA) has shown promise in effectively alleviating the performance degradation caused by domain gaps between source and target domains, and it can potentially be generalized to UAV object detection in adverse scenes. However, existing UDA studies are based on natural images or clear UAV imagery, and research focused on UAV imagery in adverse conditions is still in its infancy. Moreover, due to the unique perspective of UAVs and the interference from adverse conditions, these methods often fail to accurately align features and are influenced by limited or noisy pseudo-labels. To address this, we propose the first benchmark for UAV object detection in adverse scenes, the Statistical Feedback-Driven Threshold and Mask Adjustment Teacher-Student Framework (SF-TMAT). Specifically, SF-TMAT introduces a design called Dynamic Step Feedback Mask Adjustment Autoencoder (DSFMA), which dynamically adjusts the mask ratio and reconstructs feature maps by integrating training progress and loss feedback. This approach dynamically adjusts the learning focus at different training stages to meet the model's needs for learning features at varying levels of granularity. Additionally, we propose a unique Variance Feedback Smoothing Threshold (VFST) strategy, which statistically computes the mean confidence of each class and dynamically adjusts the selection threshold by incorporating a variance penalty term. This strategy improves the quality of pseudo-labels and uncovers potentially valid labels, thus mitigating domain bias. Extensive experiments demonstrate the superiority and generalization capability of the proposed SF-TMAT in UAV object detection under adverse scene conditions. The Code is released at https://github.com/ChenHuyoo .
Abstract:Visual Grounding is a task that aims to localize a target region in an image based on a free-form natural language description. With the rise of Transformer architectures, there is an increasing need for larger datasets to boost performance. However, the high cost of manual annotation poses a challenge, hindering the scale of data and the ability of large models to enhance their effectiveness. Previous pseudo label generation methods heavily rely on human-labeled captions of the original dataset, limiting scalability and diversity. To address this, we propose D2AF, a robust annotation framework for visual grounding using only input images. This approach overcomes dataset size limitations and enriches both the quantity and diversity of referring expressions. Our approach leverages multimodal large models and object detection models. By implementing dual-driven annotation strategies, we effectively generate detailed region-text pairs using both closed-set and open-set approaches. We further conduct an in-depth analysis of data quantity and data distribution. Our findings demonstrate that increasing data volume enhances model performance. However, the degree of improvement depends on how well the pseudo labels broaden the original data distribution. Based on these insights, we propose a consistency and distribution aware filtering method to further improve data quality by effectively removing erroneous and redundant data. This approach effectively eliminates noisy data, leading to improved performance. Experiments on three visual grounding tasks demonstrate that our method significantly improves the performance of existing models and achieves state-of-the-art results.
Abstract:Cardiovascular signals such as photoplethysmography (PPG), electrocardiography (ECG), and blood pressure (BP) are inherently correlated and complementary, together reflecting the health of cardiovascular system. However, their joint utilization in real-time monitoring is severely limited by diverse acquisition challenges from noisy wearable recordings to burdened invasive procedures. Here we propose UniCardio, a multi-modal diffusion transformer that reconstructs low-quality signals and synthesizes unrecorded signals in a unified generative framework. Its key innovations include a specialized model architecture to manage the signal modalities involved in generation tasks and a continual learning paradigm to incorporate varying modality combinations. By exploiting the complementary nature of cardiovascular signals, UniCardio clearly outperforms recent task-specific baselines in signal denoising, imputation, and translation. The generated signals match the performance of ground-truth signals in detecting abnormal health conditions and estimating vital signs, even in unseen domains, while ensuring interpretability for human experts. These advantages position UniCardio as a promising avenue for advancing AI-assisted healthcare.
Abstract:The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.